
Electronic Communications of the EASST
Volume 10 (2008)

Proceedings of the
Seventh International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

A Static Layout Algorithm for DIAMETA

Sonja Maier and Mark Minas

14 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A Static Layout Algorithm for DIAMETA

Sonja Maier1 and Mark Minas2

1 sonja.maier@unibw.de
2 mark.minas@unibw.de

Institut für Softwaretechnologie
Universität der Bundeswehr München, Germany

Abstract: The diagram editor generator framework DIAMETA utilizes meta-model-
based language specifications and supports free-hand as well as structured editing.
In this paper we present a layouting approach that is especially well suited for a static
layout. It is based on the layout algorithm presented in [MM07a] that uses the two
concepts constraint satisfaction and attribute evaluation. This algorithm is combined
with graph transformations and the result is a natural way of describing the layout
of visual languages. As an example we use a simplified version of Sugiyama’s
algorithm, applied to statechart diagrams.

Keywords: Layout Algorithm, Static Layout, Dynamic Layout, Constraints, At-
tribute Evaluation, Graph Transformation

1 Introduction

Each visual editor implements a certain visual language. Several approaches and tools have been
proposed to specify visual languages and to generate editors from such specifications. These
attempts can be characterized by the way the diagram language is specified, and by the way the
user interacts with the editor and creates respectively edits diagrams. Most visual languages as
of today have a model as (abstract) syntax specification. Models are essentially class diagrams
of the data structures that are visualized as diagrams.

When considering user interaction and the way how the user can create and edit diagrams,
structured editing is usually distinguished from free-hand editing. Structured editors offer the
user some operations that transform correct diagrams into (other) correct diagrams. Free-hand
editors, on the other hand, allow to arrange diagram components from a language-specific set on
the screen without any restrictions, thus giving the user more freedom. The editor has to check
whether the drawing is correct and what its meaning is.

One weak point of such editors is, as always, layout. When talking about layout, we need to
distinguish two terms: Layout, the general term, and layout refinement. Layout refinement starts
with an initial layout and performs minor changes to improve it while still preserving the “feel”
(or “mental map” [PHG07]) of the original layout. Especially user interaction is considered
in this context. Layout may also position components of the diagram from scratch without an
initial layout. For structured editing, layout is required, as newly created components need to
be positioned from scratch. For free-hand editing, either layout or layout refinement may be
applied. We also need to distinguish the two terms static layout and dynamic layout. When
applying a static layout algorithm to a diagram, it always returns the same visual representation

1 / 14 Volume 10 (2008)

mailto:sonja.maier@unibw.de
mailto:mark.minas@unibw.de

Static Layout Algorithm

of the diagram. When applying a dynamic layout algorithm, the result is influenced by the
”layout” of the initial diagram and by the user input.

In [MM07a] we presented a dynamic layout algorithm usable for model-based visual lan-
guages. It meets the demands of structured as well as free-hand editing. The algorithm combines
the concepts constraints and attribute evaluation to an algorithm that is fast, flexible and behav-
ing the desired way. This approach provides us with all we need for layout refinement. But we
have recognized that constraints and attribute evaluation rules for such a specification quickly
get long and complicated, especially when using a ”real world” layouting strategy.

In this paper, we extend our approach, improving this aspect. We combine graph transfor-
mation and the dynamic layout algorithm presented in [MM07a]. Graph transformations are
applied, with the goal that the complexity of the constraints and attribute evaluation rules used
to specify the dynamic layout algorithm is reduced. The approach also has the benefit that the
layout algorithm is separated into phases, each of them treated independently. The reduction of
complexity as well as the separation into phases simplifies the creation process of a new layout-
ing strategy. The modularity of the algorithm additionally offers us perfect conditions for setting
up a ”testing environment” for layout strategies.

Figure 1: Sugiyama’s Algorithm applied to Statecharts

We demonstrate our approach by specifying Sugiyama’s algorithm (a simplified version), a
standard layouting strategy for graphs.

We have integrated and tested our approach in DIAMETA [Min06]. DIAMETA follows the
model-driven approach to specify diagram languages. From such a specification, an editor, of-
fering structured as well as free-hand editing, can be generated. Figure 1 shows a statechart dia-
gram before and after applying Sugiyama’s algorithm. The diagram was created via a DIAMETA

editor. The layout algorithm was implemented using the approach presented in this paper.
Section 2 introduces the model of statecharts, the visual language that is used as a running

example. Section 3 gives an overview of DIAMETA, the environment in which the algorithm has
been tested. Section 4 explains the proposed algorithm, and Section 5 gives a detailed example.
Section 6 contains related work, and Section 7 concludes the paper.

Proc. GT-VMT 2008 2 / 14

ECEASST

Figure 2: Statechart Diagram

2 Running Example

As a running example we use statecharts. In Figure 2 we see a layouted statechart diagram.
Figure 3 shows the meta model of simplified statecharts presented in this paper. We have

”states” (class State) and ”transitions” (class Transitions). A ”state” can either be a ”transition
source” (class TransSource) or a ”transition target” (class TransTraget). A ”transition” connects
one ”transition source” with one ”transition target” (roles from and to). A ”transition source” or
”transition target” may be connected with an arbitray number of ”transitions” (roles inv from and
inv to). A ”transition source” can either be an ”initial state” (class InitState) or a ”labeled state”
(class LabeledState). A ”transition target” can either be a ”labeled state” or a ”final state” (class
FinalState). A ”labeled state” can be an ”or state” (class OrState), an ”and state” (class AndState)
or a ”plain state” (class PlainState). An ”and state” must contain at least two ”and compartments”
(class AndCompartment). A ”state container” (class StateContainer) may contain one or more
”states”. A ”state container” can either be an ”or state” or an ”and compartment”.

State

TransTargetTransitionTransSource

InitState FinalState

StateContainer AndState PlainState

OrState AndCompartment

LabeledState
label : EString

from inv_from inv_to to

1 10..* 0..*

inv_tAnd

tAnd

2..*

1

nestedState

inv_nestedState

1..*

0..1

prevX, prevY, init

Figure 3: Meta Model of Statecharts

3 / 14 Volume 10 (2008)

Static Layout Algorithm

For the layout specification, we added three associations with the roles prevX, prevY and init
to the meta model. Their usage will be explained in Section 5.

V_Transition

xStart

yStart

xEnd

yEnd

flipped

V_State

xPos

yPos

layerX

layerY

layerWidth

layerHeight

layerWidthComp

layerHeightComp

flipped

Figure 4: Visual Components

Visual components are created for ”states” and ”transitions”
(Figure 4). For the visual representation, we distinguish between
”initial states”, ”labeled states” and ”final states”. A ”transition”
is visualized by an arrow with the start point (xStart,yStart) and
the end point (xEnd,yEnd). It also has the attribute flipped, that
will be described later. ”Initial states” are visualized by a filled
circle, ”final states” by two circles, and ”labeled states” by a
rounded rectangle. Its position is described by its top left corner
(xPos,yPos) and its size by its width (width) and height (height).
A state also has the attributes layerX, layerY, layerWidth, lay-
erHeight, layerWidthComp, layerHeightComp and flipped, that
will be described later.

3 DIAMETA

In this section, we are going to introduce DIAMETA, the environment the algorithm was im-
plemented in. It is needed to understand the context in which graph transformations and the
dynamic layout algorithm are used. In particular it generates an overview of the implementation
of graph transformations and the implementation of the dynamic layout algorithm, and how they
were combined. The most important fact that is introduced is that graph transformations operate
on an internal graph model, whereas the dynamic layout algorithm operates on the object model.

3.1 DIAMETA Architecture

The editor generator framework DIAMETA provides an environment for rapidly developing

Editor user

selects

operation

5

reads

reads

adds/rem
oves

modifies reads

Highlights syntactically correct sub-diagrams

Dynamic Layout

Algorithm

Modeler Reducer
Model

analyzer

Graph

transformer

(optional)

Drawing

tool

Diagram
Graph

model

Instance

graph

Java

objects

Layouter

Control
selects

controls

Figure 5: Architecture of DIAMETA

diagram editors based
on meta-modeling. Each
DIAMETA editor is based
on the same editor ar-
chitecture which is ad-
justed to the specific di-
agram language. This
architecture is described
in this paragraph.
DIAMETA’s tool sup-
port for specification and
code generation, pri-
marily the DIAMETA

Designer are postponed
to the next paragraph.
Figure 5 shows the struc-

Proc. GT-VMT 2008 4 / 14

ECEASST

ture which is common to all DIAMETA editors - editors generated and based on DIAMETA. The
editor supports free-hand editing by means of the included drawing tool which is part of the
editor framework, but which has been adjusted by the DIAMETA Designer. With this drawing
tool, the user is able to create, arrange and modify the diagram components of the particular
diagram language. Editor specific program code, specified by the editor developer and generated
by the DIAMETA Designer, is responsible for the visual representation of the language specific
components. The drawing tool creates the data structure of the diagram as a set of diagram com-
ponents together with their attributes (e.g., position, size). The sequence of processing steps,
necessary for free-hand editing, starts with the modeler and ends with the model analyzer; the
modeler first transforms the diagram into an internal model, the graph model. The reducer then
creates the diagram’s instance graph that is analyzed by the model analyzer. This last processing
step identifies the maximal subdiagram which is (syntactically) correct and provides visual feed-
back to the user by drawing those diagram components in a certain color. However, the model
analyzer not only checks the diagram’s abstract syntax, but also creates the object structure of
the diagram’s correct subdiagram. The layouter modifies attributes of diagram components and
thus the diagram layout is based on the object structure, which allows to access the represented
diagram components.
The layouter is optional for free-hand editing, but necessary for structured editing. Structured
editing operations modify the graph model by the means of the graph transformer (Sect. 3.3)
and add or remove components to respectively from the diagram. The visual representation of
the diagram and its layout is then computed by the layouter. For our approach, we introduced an
additional component that controls the layout, which will be explained in Sect. 3.5.

3.2 DIAMETA Framework

Editor developer

Diagram editor

DiaMeta

editor

framework

DiaMeta

DesignerDiaMeta

Layouter

program

code

EMF

Compiler

operates ECore

Modeller

ECore

Specificationoperates

Generated

Program

code

Editor

Specification

3

Generated

program

code

Figure 6: DIAMETA Framework

This paragraph outlines DIAMETA’s
environment supporting specifica-
tion and code generation of diagram
editors that are tailored to specific
diagram languages. The DIAMETA

environment shown in Figure 6 con-
sists of an editor framework and the
DIAMETA Designer.

The framework is basically a col-
lection of Java classes and pro-
vides the dynamic editor function-
ality, which is necessary for edit-
ing and analyzing diagrams. In or-
der to create an editor for a specific
diagram language, the editor devel-
oper has to enter two specifications:

First, the abstract syntax of the diagram language in terms of its model and second, the visual
appearance of diagram components, the concrete syntax of the diagram language, the reducer
rules and the interaction specification. Besides that, he may provide a layout specification, if he

5 / 14 Volume 10 (2008)

Static Layout Algorithm

wants to define a specific layouter. A language’s class diagram is specified as an EMF model
(ECore specification), created by using the ECore modeller. The EMF compiler is used to create
Java code that represents this model. Figure 3 shows the class diagram of statecharts as an EMF
model. The editor developer uses the DIAMETA Designer for specifying the concrete syntax
and the visual appearance of diagram components, e.g., initial states are drawn as circles. The
DIAMETA Designer generates Java code from this specification. In addition, the editor developer
can provide a layouter. This Java code, together with the Java code generated by the DIAMETA

Designer, the Java code created by the EMF compiler, and the editor framework, implement an
editor for the specified diagram language.

3.3 Graph Transformer

DIAMETA offers the possibility to specify structured editing operations via graph transforma-
tions. These transformations operate on an internal graph model that is freely modifiable. They
are defined in the Designer Specification, by a textual language. A graph transformation is either
called by the editor user, or by the Layouter Control, which is described in Subsection 3.5.

3.4 Dynamic Layout Algorithm

In Figure 7 we can see a birds-eye view of the dynamic layout algorithm that has been presented
in [MM07a]: The algorithm is based on the idea that a set of declarative constraints is given,
assuring the characteristics of the layout. If all constraints are satisfied, the layouter terminates.
If one or more constraints are not satisfied, the layouter needs to change some attributes to satisfy
the constraints. Therefore it switches on one or more attribute evaluation rules. These rules are
responsible for updating the attributes, i.e., to satisfy the constraints. The layouter is either called

4

Diagram
[updated]

Diagram
[modified] Layout Algorithm

calculate
new values

switch on
rules

check
constraints

update
diagram

[otherwise]

[all satisfied]

check
semantics

[otherwise]

undo
changes

[semantics
 maintained]

user
interaction

update
attribute
values

Figure 7: Dynamic Layout Algorithm

directly by the user or by the Lay-
outer Control. All potentially vio-
lated layout constraints are checked,
and the rules that were switched on
are collected. Thereafter the new
values for the attributes are calcu-
lated via attribute evaluation. Now,
the constraints are checked again,
since new constraints may have be-
come unsatisfied due to changes
performed by the layouter. If all
constraints are satisfied, the lay-
outer succeeds and reports the new
attribute values. Otherwise, the lay-
outer has to evaluate the rules again.
If the layouter does not succeed af-
ter a certain number of iterations,
the layouter stops and returns the
old values as result.

Proc. GT-VMT 2008 6 / 14

ECEASST

3.5 Layouter Control

We offer the editor user two possibilities to apply a layouting strategy. Either the user can choose
a layouting strategy, and all phases are applied automatically. This is the ”normal” operating
mode. Alternatively, the editor user may apply each phase manually by clicking a button. This
is the ”test” operating mode, that turned out to be very helpful during layouter creation.

When applying a strategy automatically, as shown in Figure 5, the editor user has to select
the desired layouting strategy (layouter control). The layouter control then ”controls” the graph
transformer and the dynamic layout algorithm. For each phase, the layouter control inserts the
”right” graph transformation or dynamic layout algorithm, and initiates the process shown in
Figure 5.

When applying a strategy manually, the editor user has to select the desired graph transforma-
tion or dynamic layout algorithm. The layouter control then inserts this graph transformation or
dynamic layout algorithm, and initiates the process shown in Figure 5.

Graph transformations operate on the internal graph model and change this model. After-
wards, the processing steps that are required after a graph transformation are executed, and the
diagram as well as the object model are updated. The dynamic layout algorithm operates on the
object model and updates the attributes of the object model. Afterwards, the necessary steps are
processed and the diagram is updated.

4 Layout Algorithm

The idea of the algorithm is combining graph transformation and the dynamic layout algorithm
described in [MM07a]. Therefore, the layouting strategy is separated into different phases. In
each phase, either a graph transformation or the dynamic layout algorithm is applied.

The general idea is the following: A graph transformation changes the model. Then the dy-
namic layout algorithm updates attribute values. Afterwards, a graph transformation undoes
intermediate changes in the model. The purpose of intermediate changes in the model is re-
ducing the complexity of the constraints and attribute evaluation rules specified in the dynamic
layout algorithm. The separation into different phases splits up the dynamic layout algorithm
into small pieces, and again reduces the complexity.

In Section 5 we are going to examine a concrete example, providing the reader with a better
understanding of how to separate an algorithm into different phases.

5 Layout Algorithm for Statecharts

The layout algorithm we are going to specify is a simplified version of Sugiyama’s algorithm
[STT81]. It has been defined by a combination of graph transformations and the dynamic layout
algorithm presented in [MM07a].

Sugiyama’s algorithm is split up into different phases. We have refined this sequence of phases
and specify each phase either by graph transformation (GT) or the dynamic layout algorithm
(LA) to update the diagram. In the following section we are going to describe these phases in
more detail.

7 / 14 Volume 10 (2008)

Static Layout Algorithm

01 (GT) Cycle Removal 07 (LA) Calculation of Layer
02 (LA) Horizontal Layering Height and Width
03 (GT) Dummy Node Insertion 08 (LA) Update Position of States
04 (GT) Connecting of States in Vertical Layer 09 (LA) Update Position of Arrows
05 (LA) Vertical Layering 10 (GT) Dummy Node Replacement
06 (GT) Connecting of States in Horizontal Layer 11 (GT) Undo Cycle Removal

5.1 Phases

01 (GT) Cycle Removal A statechart diagram - when ignoring hierarchical states - is a directed
graph that may contain cycles. In the first phase, these cycles are removed by flipping one or
more edges.

Figure 8: Cycle Removal

forall [arrow]=getArrow_() (markUnvisitedArrow_(arrow))
forall [state]=getState_() (markUnvisitedState_(state))
((

forall [state]=getStateWithNoOutgoing_()
(unmarkIngoing_(state)! unmarkState_(state))

getStateWithNoOutgoing_()
)!
flipOutgoing_()
getStateUnvisited_()

)!

We use the following algorithm
to do this. First, all states and tran-
sitions are marked with a unary hy-
peredge in the graph model. The
mark is removed at all states with-
out any marked outgoing transition
arrows. Their ingoing transitions
are also unmarked. If all marks are
removed, we are done. Otherwise,

we know that the diagram contains one or more cycles. If this is the case, the algorithm ar-
bitrarily chooses one marked state, and flips all outgoing edges by changing the value of the
attribute flipped. Now, the algorithm continues with the first steps and proceeds till all marks
were removed.

We implemented this algorithm by the graph transformation shown above, using the hyper-
graph transformation approach provided by DIAMETA. A statement of the form
forall [a] = getA() (do(a)) calls the rule getA() and stores return values in the
list [a]. Then the rule do(a) is applied to all elements a of the list. The statement (do())!
calls the rule do() as many times as applicable. Figure 8 shows a statechart before and after
cycle removal. In this example, the black arrow (indicated by the ellipse) has been flipped.

Proc. GT-VMT 2008 8 / 14

ECEASST

Figure 9: Statechart with Layers

02 (LA) Horizontal Layering The
attribute evaluation rule that is asso-
ciated with the transition trans takes
care of computing the attribute lay-
erX. If a state has no incoming edges,
layerX has the value 1. Otherwise,
layerX is the maximal distance of a
state from the initial state. Figure 9
shows a statechart with the values of
the attributes layerX and layerY1.

trans.to.layerX := max(trans.to.layerX, trans.from.layerX + 1)

03 (GT) Dummy Node Insertion As a next step, dummy nodes are inserted, such that arrows
only connect states in one layer with states in the next layer (layerX).

The algorithm works as follows: For each arrow, it is checked if it connects a state in one layer
with a state in the next layer. When this is not the case, e.g., if it connects a state in layer n with
a state in layer n+2, one or more dummy nodes are inserted.

We have implemented this algorithm by a graph transformation. The inserted dummy nodes
are plain states that are marked as dummy (by changing the value of the attribute dummy). These
dummy nodes also have layer attributes. Figure 10 shows a sample dummy node insertion. Here,
three nodes had to be inserted.2

Figure 10: Dummy Node Insertion

04 (GT) Connecting of States in Vertical Layer All states in one vertical layer are connected
by the link prevY. The elements of a layer can be identified by the attribute layerX that was
previously set. The sorting of the elements is arbitrary. This connection is realized by a simple
graph transformation. The transformation inserts for each link required in the object model an
edge in the graph model, which is then translated into the link in the object model. The arbitrary
sorting could be replaced by a more sophisticated strategy, e.g., by a strategy that minimizes
the number of edge crossings, or by a dynamic layout algorithm enabling the user to change the
sorting.

1 The attribute layerY is updated in phase 05.
2 The diagram in Figure 10 was already layouted. Otherwise, the dummy nodes would appear at the point (0,0).

9 / 14 Volume 10 (2008)

Static Layout Algorithm

05 (LA) Vertical Layering All states in one layer are connected by a link (prevY). The com-
putation of layerY is done by the following attribute evaluation rule, that is associated with the
state state. If state.prevY does not exist, layerY is set to 1.

state.layerY := state.prevY.layerY + 1

06 (GT) Connecting of States in Horizontal Layer After updating the attribute layerY, the
states in each horizontal layer are connected via the link prevX. The elements of a layer are
identified by the attribute layerY. The sorting of the elements is similar to the value of the attribute
layerX.3 This connection is again realized by a graph transformation.

07 (LA) Calculation of Layer Width and Height As stated in the last paragraph, all states in
one horizontal layer are connected via the link prevX, and all states in one vertical layer

Figure 11: Variable Size

are connected by the link prevY. The height of a
horizontal layer is the height of the highest com-
ponent in the layer. The width of a vertical layer
is the width of the widest component in the layer.
The computation is done by a pairwise comparison,
i.e., by the following rules, associated with the state
state. Initially, state.layerWidth is set to state.width
and state.layerHeight is set to state.height. Fig-
ure 11 shows a diagram with states of variable size.

state.layerWidth := state.width
state.layerWidth := max(state.prevY.layerWidth, state.layerWidth)

state.layerHeight := state.height
state.layerHeight := max(state.prevX.layerHeight, state.layerHeight)

08 (LA) Update Position of States Firstly, the states are layouted. The position of initial states
is not updated. This has the consequence that the position of initial states is variable. Labeled
states and final states are updated via the following attribute evaluation rules, associated with the
state state.

state.layerWidthComp := state.prevX.layerWidthComp + state.prevX.layerWidth
state.layerHeightComp := state.prevY.layerHeightComp + state.prevY.layerHeight

state.xPos := state.init.xPos + state.layerWidthComp + state.layerX*80
state.yPos := state.init.yPos + state.layerHeightComp + state.layerY*40

+ state.layerHeight/2 - state.height/2

state.layerWidthComp and state.layerHeightComp is the complete width respectively height of
all previous states. state.init is the corresponding initial state. state.layerX*80 and state.layerY*40
insert spacing between the layers. Components are horizontally centered by adding + state.layerHeight/2
- state.height/2.4

3 It might be the case that one or more numbers are missing, due to the structure of the statechart.
4 Initial states are not layouted, and hence they are not centered, e.g., as can be seen in Figure 11.

Proc. GT-VMT 2008 10 / 14

ECEASST

09 (LA) Update Position of Arrows Arrows are also layouted. Attribute updating is per-
formed via the following attribute evaluation rules, associated with the transition trans. The
transition starts in the middle right of a state, and ends in the middle left of the next state.

trans.xStart := trans.from.xPos + trans.from.width
trans.yStart := trans.from.yPos + trans.from.height / 2

trans.xEnd := trans.to.xPos
trans.yEnd := trans.to.yPos + trans.to.height / 2

Figure 12: Dummy Node Replacement

10 (GT) Dummy Node Replacement In this
step, all dummy nodes are replaced by bends.
This is done by a simple graph transformation.
For each dummy node, the incoming and the
outgoing arrow5 are merged, and a new arrow
is created. The dummy node is removed. Fig-
ure 12 shows the diagram of Figure 10 after re-
placing dummy nodes by bends. Here, three
dummy nodes were replaced.

11 (GT) Undo Cycle Removal As a last step, the previously flipped edges need to be turned
around again. E.g., in Figure 8 (left diagram) we can see the result of undoing the cycle removal
as it was done in Figure 8 (right diagram). In this case, the result is the initial diagram. This is
not always the case, as there could have been changes in the last steps of the algorithm.

Figure 13: Nested States

Statecharts with Nested States It is also pos-
sible to include nested states. Therefore, the
two statecharts are layouted and the size of the
containing state is computed from the size of the
layouted contained statechart. Figure 13 shows
a sample statechart with nested states. Right
now, the size of the containing state and the po-
sition of the contained initial must be changed
by the user, but may be specified via the layout
algorithm, e.g., an additional phase.

General Remarks Besides automatic layouting of nested states, many other enhancements,
like space saturation by floor planning, are imaginable. In our example we only used attribute
evaluation rules, not the whole functionality of the dynamic layout algorithm presented in [MM07a].
Using this, a static layout algorithm is defined. A dynamic layout is also possible when using the
whole functionality of the dynamic layout algorithm. E.g., one could offer the user the possibility
to change the order of elements in a layer (layerY).

5 A dummy node has exactly one incoming and one outgoing edge, due to the way it had been created.

11 / 14 Volume 10 (2008)

Static Layout Algorithm

6 Related Work

Many comparable tools, like AToM3, GMF, or Tiger, offer the possibility to use a standard layout
algorithm, such as FlowLayout. Besides that, some tools, like DiaGen, offer the possibility to
use constraints for layout specification. Most tools also allow the developer to write the layouter
by hand, as only a small subset of layouter’s can be realized by the mechanisms provided. With
the approach presented we try to extend this subset.

Many tools support graph transformation, e.g., Fujaba, AToM3 or Tiger, but only rarely use
them in the context of layout specification. Guerra et al. presented Event Driven Grammars
[GL07]. Rules in these grammars may be triggered by user actions, and are combined with triple
graph transformation systems. Rules may be defined especially for layout. If a rule is applicable,
it is executed and attribute values are updated. In this approach, attributes are updated through
graph transformations. In our approach, the graph model is changed via graph transformations,
and then the attributes are updated via the dynamic layout algorithm. This gives us more freedom
and reduces the size of a layout specification, especially when considering dynamic layout.

UML diagrams, such as activity and statechart diagrams are basically directed graphs. Most
approaches for drawing directed graphs used in practice are based on Sugiyama’s algorithm
[STT81], e.g., an efficient implementation is presented in [ESK05]. Visual language specific
layout algorithms based on Sugiyama’s algorithm are for example described in [SK06] (activity
diagrams) or in [CMT02] (statechart diagrams). Also some work had been performed to take
user interaction into account, and to preserve the ”mental map”. When we take a look at these
algorithms, we examine that they are always hand coded. With our approach, this is done by
visual programming. In order to create a new layout algorithm, you have to provide graph
transformation rules, constraints and attribute evaluation rules instead of plain Java code. This
has the consequence that we can benefit from the advantages of visual programming: the creation
and adaption of layouting strategies is easier, and hence experiments in this context are made
possible.

Ware et al. state in [WPCM02] that (graph) aesthetics are taken as axiomatic, and have not
been empirically tested. They argue that human pattern perception can tell us much that is
relevant to the study of graph aesthetics. With our approach we created a platform for performing
this kind of studies easily, not only for graphs but for all kinds of visual languages.

Purchase et al. state in [PHG07] that dynamic graph layout algorithms have only recently
been developed. They anticipated that maintaining the ”mental map” between time slices assists
with the comprehension of the evolving graph. In DIAMETA, we do not only have automatic
time-slices, but also time-slices triggered by user interaction. Besides that, free-hand editing
provides an initial layout that needs to be considered. In DIAMETA, many degrees of freedom
are available, that may be considered when creating a new layout algorithm.

Proc. GT-VMT 2008 12 / 14

ECEASST

7 Conclusions and Future Work

In this paper we presented a layouting approach, that is especially well suited for a static layout.
It is based on the layout algorithm described in [MM07a] that uses the two concepts constraint
satisfaction and attribute evaluation. This algorithm is combined with graph transformations, and
the result is a natural way of describing the layout of visual languages. As an example a simpli-
fied version of Sugiyama’s algorithm is used, applied to statechart diagrams. We integrated and
tested our approach in DIAMETA. The possibility to define a static layout with our algorithm
was shown, and it turned out to be very elegant and intuitive. When Sugiyama’s algorithm is
explained in literature, it is described step by step. We translated each of these steps into one
or more phases. It was then possible to specify the phases independently, each of them either
by a simple graph transformation or a simple dynamic layout algorithm. In contrast to other
approaches, our layout specification is similar to the initial idea of the algorithm and, and hence
the creation is more convenient for the developer.

In the current implementation, graph transformation operates on the graph model and attribute
evaluation on the instance of the meta model. For future implementations, we will investigate
the possibility to offer ”graph transformation” that operates on the instance of the meta model.
E.g., we will investigate the EMF Transformer presented in [BEK+06]. This would reduce the
complexity of the approach presented. In the current implementation, this is not possible, as
DiaMeta is based on a hypergraph approach: Java objects can be created from a diagram, but a
diagram cannot be created from Java objects directly.

Right now, only the parts of the diagram that are recognized as correct, are layouted. Other
parts are not changed. Consequently, it might happen that visual components are moved by the
layouter on top of other components, not recognized as correct. In future implementations we
will need to consider parts of the diagram not recognized as correct in our layouting strategy.

For DIAMETA, an enhanced language for graph transformations and the dynamic layout al-
gorithm is planned. For the dynamic layout algorithm, it has been introduced already a pattern
concept [MM07b] that simplifies the specification.

Future work has to investigate how layouters interfere with user interactions. When creating a
diagram, we recognized that users create (one or more) states first. Then they create the transi-
tions between them. The layouter has complicated the process of diagram creation, as it moves
components away. In consequence, users turned off the layouter during creation, and turned it
on again afterwards. During user interaction, a dynamic layouting strategy that only performs
minor changes would be more adequate. Providing users with more freedom, e.g., offering the
possibility of rearranging layers, would be an enhancement. These requirements can be realized
by using the whole functionality the dynamic layout algorithm offers.

In [MM07a] we focused on dynamic layout, in this paper we focused on static layout. The
most important next step will be experiments about the combination of static and dynamic layout
in the context of structured and free-hand editing. To identify the ”best” layouting strategy, we
will need to perform empirical studies. With the algorithm presented, a testing environment was
created to conduct these studies easier.

13 / 14 Volume 10 (2008)

Static Layout Algorithm

Bibliography

[BEK+06] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss. Graphical Def-
inition of In-Place Transformations in the Eclipse Modeling Framework. Pp. 425–
439. 2006.

[CMT02] R. Castelló, R. Mili, I. G. Tollis. A Framework for the Static and Interactive Visu-
alization of Statecharts. 2002.

[ESK05] M. Eiglsperger, M. Siebenhaller, M. Kaufmann. An Efficient Implementation of
Sugiyama’s Algorithm for Layered Graph Drawing. In Graph Drawing, New York,
2005. Springer, 2005.

[GL07] E. Guerra, J. de Lara. Event-driven grammars: relating abstract and concrete levels
of visual languages. Software and Systems Modeling 6:317–347, 2007.

[Min06] M. Minas. Generating Meta-Model-Based Freehand Editors. Electronic Communi-
cations of the EASST, Proc. of 3rd International Workshop on Graph Based Tools,
Natal, Brazil, 2006.

[MM07a] S. Maier, M. Minas. A Generic Layout Algorithm for Meta-model based Editors.
In Applications of Graph Transformation with Industrial Relevance, Proc. 3rd Intl.
Workshop AGTIVE’07, Kassel, Germany. 2007.

[MM07b] S. Maier, M. Minas. A Pattern-Based Layout Algorithm for Diagram Editors. In
Electronic Communications of the EASST, Proc. Workshop LED’07, Coeur d’Alene,
Idaho, USA. 2007.

[PHG07] H. C. Purchase, E. Hoggan, C. Görg. How Important is the ”Mental Map”? – an
Empirical Investigation of a Dynamic Graph Layout Algorithm. In Kaufmann and
Wagner (eds.), Graph Drawing, Karlsruhe, Germany. Springer, 2007.

[SK06] M. Siebenhaller, M. Kaufmann. Drawing Activity Diagrams. In Proceedings of the
2006 ACM symposium on Software visualization. ACM, New York, USA, 2006.

[STT81] K. Sugiyama, S. Tagawa, M. Toda. Methods for Visual Understanding of Hierar-
chical System Structures. IEEE Transactions on Systems, Man, and Cybernetics,
1981.

[WPCM02] C. Ware, H. Purchase, L. Colpoys, M. McGill. Cognitive measurements of graph
aesthetics. Information Visualization, 2002.

Proc. GT-VMT 2008 14 / 14

	Introduction
	Running Example
	DiaMeta
	DiaMeta Architecture
	DiaMeta Framework
	Graph Transformer
	Dynamic Layout Algorithm
	Layouter Control

	Layout Algorithm
	Layout Algorithm for Statecharts
	Phases

	Related Work
	Conclusions and Future Work

