
Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz
Kommunikation in Verteilten Systemen 2011

(WowKiVS 2011)

Towards Swarm-based Federated Web Knowledgebases

Philipp Obermeier, Anne Augustin and Robert Tolksdorf

12 pages

Guest Editors: Horst Hellbrück, Norbert Luttenberger, Volker Turau
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Towards Swarm-based Federated Web Knowledgebases

Philipp Obermeier1, Anne Augustin2 and Robert Tolksdorf2

1Digital Enterprise Research Institute, National University of Ireland, Galway
philipp.obermeier@deri.org

2Freie Universität Berlin, Institut für Informatik, AG Netzbasierte Informationssysteme,
Königin-Luise-Straße 24-26, D-14195 Berlin, Germany

aaugusti@inf.fu-berlin.de, tolk@ag-nbi.de

Abstract: Internet knowledgebases are more and more described using ontological
vocabularies. However, efficient coherent solutions for both federated storage and
reasoning upon widely distributed web repositories are rarely explored. We present
a self-organized, distributed storage and reasoning approach based on swarm intelli-
gence exploiting the strong applicability of swarm algorithms to distributed environ-
ments. While centralized reasoning has problems in scalability, swarm intelligence
has the potential to reach Web scalability. Our concept comprises two layers of
swarm algorithms - storage and reasoning layer - for information storage and in-
ference of new statements, respectively. We present for the former our concepts
with first evaluation results and give for the latter a general swarm-based concept
for forward-chaining assertional reasoning in the description logic A L C .

Keywords: Selforganization, Semantic information, Reasoning, Swarming

1 Introduction

In contrast to the present internet-scale distribution of data today’s RDF (Resource Description
Format) storage solutions rarely offer efficient querying and reasoning support across multiple,
widely distributed knowledgebases. The scalability of existing systems is often hampered by the
need of centralized components to coordinate and control storage management and reasoning
tasks, e.g. centralized indices and routing facilities. To this end we suggest a storage and rea-
soning infrastructure fully based on swarm algorithms, which is completely self-organized and
highly applicable in distributed environments. On the surface our swarm-based system offers two
major functionalities - federated distributed storage and forward-chaining assertional reasoning
for a distributed knowledgebase defined by assertional statements and terminological axioms.
In this connection, we assume, that the employed data model is RDF [W3C04b] and the used
ontology language is based on a subset of description logics e.g. RDFS, OWL-Lite (Web Ontol-
ogy Language) and OWL-DL (OWL Description Logics) [W3C04c, W3C04a]. Although, our
swarm-based reasoning concept temporarily only supports A L C (Attributive Language with
Complements), we strive to achieve S H OI N (basis for OWL logic) reasoning.

Storage and reasoning layer completely rely on swarm intelligence, whose individuals act in a
fully self-contained, probabilistic way. Therefore, our system offers a completely decentralized,
self-adaptive mode of operation without the need of any central control entity. As trade-off for
this kind of fexibility, we cannot guarantee completeness for querying and reasoning, though, our

1 / 12 Volume 37 (2011)

mailto:philipp.obermeier@deri.org
mailto:aaugusti@inf.fu-berlin.de, tolk@ag-nbi.de

Towards Swarm-based Federated Web Knowledgebases

previous experiments on swarm-based RDF stores showed a high level of recall. Furthermore,
ants in storage and reasoning layer are created according to a type describing the ants’ behavior.

Section 2 addresses work related to this paper and Section 3 our overall concept. Sections 4
and 5 detail the storage and reasoning layers. We conclude with open problems and future work.

2 Related Work

Linda [Gel85] is a coordination language where processes exchange data via a shared, associative
memory, the so-called tuple space. The out-operation puts a tuple which is an ordered sequence
of typed data objects like <4,"hello",1.2> into that space. To retrieve the data, the in-operation
is used which searches the tuple space for data matching a template which is an argument to the
operation. For example in(<4,?string,?float>) would retrieve the above tuple since the template
contains the same value in the first field and the others have the datatype requested with the tuple.
The rd-operation is the same as the in-operation but returns a copy of a matching tuple instead
of removing it. In several projects the Linda Model has been extended to contain semantic infor-
mation, whereas the tuples were replaced by RDF triples, see for example [NSKM08], [SKN07]
and [TNS08]. In SwarmLinda [MT03] the idea is to completely decentralize the tuplespace and
to establish self organization mechanisms to make it scalable and dynamic enough for large open
systems. Tuple distribution and retrieval are performed by autonomic entities that use algorithms
for foraging and brood sorting found in natural ant-colonies [BDT99]. In [TA09] and [Kos09]
the ant colony algorithms of SwarmLinda were adopted to realize a distributed storage for RDF
triples. Both approaches are the basis for the storage layer of our presentation in section 4.

In regard to scalable distributed RDF query processing and reasoning, RDFPeers [CF04] in-
troduces a spanning of RDF repositories over a peer-to-peer network. Execution of disjunctive
and conjunctive queries over distributed storages are supported, but no reasoning. A more recent
peer-to-peer approach is MaRVIN [AKO+08], which enables parallel computing of RDFS and
OWL closures across multiple networked node machines. First evaluation results within a local
grid setup supports the authors’ claim of high scalability in terms of number of nodes. A first
swarm-based reasoning proposal was introduced by Kathrin Dentler et al. [DGS09], in which
ants move along the RDF graph structure and apply RDFS axioms to matching assertions. Addi-
tional, an exemplary draft for an extension of this algorithm by supporting SWRL rules is given
in [Den09]. In contrast to our approach, Dentler et al. use scents solely to find seldom-visited
parts of the RDF graph. Furthermore, a centralized bloom filter for ant routing is employed,
which conflicts with our goal of total decentralization.

3 Concept

We aim at a distributed system for RDF data storage and ontology-based reasoning, that is ex-
tensively based on swarm intelligence. , The system consists of a storage and reasoning layer
which are realized by two different classes of ants. The storage ants manage the system’s data to
facilitate efficient querying and the reasoning ants infer new knowledge from data.

The storage layer stores and queries triples in a network of server nodes. The primitive
out<triple> stores a triple in the storage and rd<template> and in<template> query a triple from

Proc. WowKiVS 2011 2 / 12

ECEASST

the storage where in removes the concerning triple. The out-operation is performed by out-ants
which build clusters of similar triples and leave trails to these so that future ants can locate them
easily. Section 4 introduces two different clustering approaches used by the out-ants. One is
based on a syntactical similarity measure that compares the URIs of the triples’ resources. The
second accounts for the taxinomial similarity of the resources. The in- and rd -operations are
performed by in- and rd-ants. They carry templates and search the network for matching triples.
The template can be a simple triple pattern with constant and variable fields like (s,p,?o). We
also allow templates that have concept fields, which have to be replaced by a resource of that
concept, like (<C>,p,?o). It matches all triples that have a resource of the concept C as subject
and p as predicate. (a,p,o) matchesx this template if there is a statement (a, rdf:type, C).

In the reasoning layer ants implement forward assertional reasoning based on the knowledge
held in the storage layer. More precisely, for every terminological axiom added to the storage
layer the system defines a new ant type. Additionally, it creates a number of ant instances for
this type in proportion to the scale of the distributed system. Each of these ants applies the
newly inserted terminological axiom to matching assertions within the knowledgebase and ,thus,
creates new assertions, which are in turn placed in the storage. This method of reasoning infers
intensional knowledge in a brave way, i.e., assertions may be entailed iff they are in the closure of
some minimal Herbrand model for the knowledge base. Over time a subset of the brave inference
closure with regard to minimal Herbrand interpretations is computed. In general, though, it
cannot be guaranteed that at a certain point of time the complete closure is computed, since
storage and reasoning ants act in a probabilistic way on several occasions, e.g., detection or
placement of assertions. Moreover, inferred statements can be retrieved in the same way as pre-
existing data via the rd operation at the storage layer. In sequel, we will further investigated
swarm-based reasoning and related issues at Section 5.

The following example depicts the underlying notion for the system’s reasoning concept: Our
system should be initialized with a distinct knowledge base KB. As mentioned before, for each
TBox axiom KB our system creates a distinct type of ants. The TBox holds the DL axiom
ta := pro f essoru researcher v seniorresearcher, encoded as OWL ontology in Listing 1. An
ant of ta’s type begins its inference procedure by looking for scent trails that lead to the con-

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefx : <http://ag-nbi.de/data/> .
:rsearcher rdf:type owl:Class .
:professor rdf:type owl:Class .
intersection of classes ’researcher’ and ’professor’
_:x rdf:type owl:Class ,

intersectionOf _:l1 ,
rdfs:subClassOf seniorresearcher .

_:l1 rdf:first :researcher ,
rdf:rest _:l2 .

_:l2 rdf:first :professor ,
rdf:rest rdf:nil .

Listing 1: TBox axiom given in OWL

cepts pro f essor and researcher. Without loss of generality, we assume that the ant detects a

3 / 12 Volume 37 (2011)

Towards Swarm-based Federated Web Knowledgebases

scent of the pro f essor cluster, follows it, and finds and memorizes a resource :peter belonging
to pro f essor. It then follows a scent trail for researcher and searches researcher(:peter). A suc-
cessful search creates a new assertion seniorresearcher(:peter) and deposits it in the seniorresearcher
cluster while acting like a storage ant. Finally, the ants clears its local memory and restart this
procedure. Besides that, the ant not only resolves the “proposition” of ta as described above, but
also the “contraposition” of ta, i.e., ¬seniorresearcher implies ¬(pro f essoru researcher).

4 Storage Layer

Applying an out<(s,p,o)> to the system three out-ants are generated each of which walks in
the network of nodes and tries to build clusters based on one of the triple’s fields respectively.
We call that field cluster resource which can be subject, predicate or object and we refer to the
corresponding out-ants as subject ant, predicate ant and object ant. For example the subject
ant would determine the subject s as cluster resource and therefore would place the triple into
a cluster where are triples with resources that resemble s. Roaming the network to find a suited
place for the triple the ants follow scents that resemble the cluster resource. When an out-ant
drops a triple it emits the scent of the triple’s cluster resource on the concerning node and in
weaker quantity on its neighbors in order to attract future ants following these scents. To query
triples from the storage template ants are generated carrying triples where one or two fields are
missing. For example template (?s,’http://d.org/o#authored’, http://d.org/books/orientexpress’)
is used to find a triple that informs about the authorship of a specific book. In this case two
ants are generated that look in two resource-clusters where are resources similar to http://d.org/
o#authored and http://d.org/books/orientexpress respectively. The one arriving back first carries
the actual result, the triple found by the second ant is ignored.

The triple search for the in-ant is the same as for the rd-ant, but when it finds a matching triple it
has to remove all three copies. Therefore locking-ants are generated which try to locate the other
two copies in the respective other resource-clusters. If they succeed in locking them, all three
copies can be removed. The ants’ decisions for the path selection are probabilistic and influenced
by the amount of pheromones on the neighbor nodes and their similarity to the cluster resource.
Also the out-ant’s decision to drop the assigned triple on its current location is probabilistic and
depends on the number of resources and their similarity to the cluster resource. All ant types
have an aging mechanism which prevents them from wandering around endlessly. So when an
ant cannot perform its task in a certain timespan it dies. In the case of the out-operation the triple
is dropped on the current location. In the case of the rd- and in-operation the query remains
without response and has to be repeated after a certain time-out. Detailed descriptions of the
algorithms for the different types of ants can be found in [TA09] and [Kos09].

4.1 Clustering by Syntactic Similarity

An ant acting in a completely decentralized manner in general does not have any ontological
knowledge about the regarded resources. If one triple is (penguin,colored,blackwhite) and an-
other is (canary,colored,yellow), the ant cannot determine that the two are related because some
ontology states that both penguin and canary are subconcepts of concept bird.

Proc. WowKiVS 2011 4 / 12

http://d.org/o#authored
http://d.org/books/orientexpress
http://d.org/o#authored
http://d.org/o#authored
http://d.org/books/orientexpress

ECEASST

Therefore in [TA09] we have presented a similarity measure that is based on the URIs’ syntac-
tical structures only. The basic idea is to assume that URIs from similar namespaces are similar
in regard to their related concepts. For the above example, we would expect that the penguin-
and canary-URI would look like http://birds.org/onto.rdf#penguin and http://birds.org/onto.rdf#
canary. They are identical in the host and path parts but differ only in their fragments. In order
to measure the similarity between two regarded URIs we first split them into host- and path-
components and then compare these separately. After that the results of the comparisons are
weighted. The weighted sum of both results forms the namespace similarity simURI between the
two URIs which is in the range of 0 and 1. The value is 1 if the URIs are equal and 0 if they
are entirely different. In order to compare the hosts of two URIs we consider their “.”-separated
domain labels ([BMM94], sec 3.1). Starting with the hierarchical highest label, we compare
them pairwise applying a weighting function, so that a path segment on a higher level in the
hierarchy gets twice a weight. Along these lines the path similarity is computed by comparing
the path segments of the URL-paths pairwise. For the example above we would firstly compare
the hosts of the two URIs which are equal and therefore have similarity 1, secondly we would
compare the paths which differ only in their fragments (to simplify the comparison the frag-
ment is assigned to the path). The first path segment gets twice a weight of the fragment, so the
path similarity is 1 · 2

3 + 0 · 1
3 = 0,6, as the the first path segments are equal and the fragments

are different. Weighting the host with 0,9 and the path with 0,1 we get a overall similarity of
0,9 · 1+ 0,1 · 0,6 = 0,96. The resulting namespace similarity between the two URIs is quite
high, so that it is very probable that they are placed in the same cluster. The general formulas for
computing the namespace similarity between different types of URIs can be found in [TA09]

The syntactical approach was implemented as a simulation using NetLogo [TW04]. First
results of an evaluation on a network of 50 nodes with data from DBPedia [ABK+07] and
LUBM [GPH05] show that the similarity of the resources and triples on the nodes increases
when they are distributed by our algorithms in comparison with a random distribution. Also the
rd-operations perform much better after triple distribution by the out ants. That seems to indicate
that the ants successfully build clusters of similar triples and the trails work properly.

1

0

average average-res median

random p-drop1 p-drop2 p-drop3

75

56

19

0

38

success ants failed ants steps success ants

Figure 1: Evaluation of out (left) and rd (right)

The average results from five test runs are shown in figure 1. Three slightly different drop prob-

5 / 12 Volume 37 (2011)

Towards Swarm-based Federated Web Knowledgebases

abilities pdrop1, pdrop2, pdrop3 that were used by the out-ants to decide whether a triple should be
dropped on its current location were compared. average denotes the average similarity of the
triples on the nodes in the network. Therefore the average similarity of the triples on each node
was calculated and the average value of all nodes was determined. average-res was calculated
similarly by comparing the resources on the nodes instead of the triples. In order to determine
median the median similarity of the triples on the node was calculated and averaged. The de-
tailed formulas used in the evaluation can be found in [TA09]

success ants denotes the number of rd-ants which found a matching triple, failed ants is the
number of ants which did not find a triple and steps success ants is the average number of steps
that a successful in-ant took before finding a matching triple.

The advantage of the syntactical clustering approach is that the ants do not need to have any
ontological knowledge which is distributed over the network. Clusters are located easily without
search for ontological information so that triples can be retrieved efficiently. In this case, extreme
decentralization is leading to scalability. Adding n ants to the system the processing amount of
a single ant increases with the factor n. In our implementation we realized the retrieval of single
triples only, but theoretically it is possible when applying a rd -operation to retrieve all triples to
a given template that are found in a certain timespan with no guarantees for completeness.

4.2 Clustering by Formal Concept Similarity

While the syntactical clustering approach seems to allow efficient distributed triple storage and
retrieval, there are still reasons for clustering triples that are semantically related by an ontol-
ogy. First of all semantically related resources can have completely different namespaces and
can be in different clusters which are far away from each other. For example if we want to
query all statements about all five-star hotels ((<fivestarhotel>,?p,?o) whereas fivestarhotel is a
concept, which has to be replaced by a resource of this concept), the URIs of the hotels could
differ entirely, and the concerning triples would be spread over the network. Thus such queries
would be possible but quite inefficient, as after having queried all resources of a concept the ants
would have to search in different parts of the network. For such queries it would be worthwhile
if resources that are assigned to the same concept would be not too far from another. Also for
many reasoning tasks it is advantageous if semantically related triples are close together. For
example (C, p, o) and (a, rdf:type, C) can be found in the same concept cluster C. From the two
statements we can infer the triple (a,p,o) that also fits in this cluster. Thus the distances that the
reasoning ants have to cover are reduced. In our second approach which is based on [Kos09]
we cluster by concept similarity. Here the idea is to cluster triples with resources that are taxi-
nomially related. For example penguin statements are similar to canary statements as they are
statements about birds. So they would be close together in the network and also nearby state-
ments about birds. The goal is to get clusters of triples with resources that are assigned to the
same concept to which ants are attracted by concept scents. As in the beginning an ant that per-
forms an out, rd or in generally does not have any ontological knowledge, it starts by querying
the assigned concept. In [Kos09] this is solved by an additional syntactical cluster layer where
the rdfs:subClassOf -, rdfs:subPropertyOf- and rdf:type-Statements are clustered using the syn-
tactical strategy described above. In the following we will refer to these triples as taxinomial
information. In the beginning an ant retrieves the necessary information by specialized rd-ants

Proc. WowKiVS 2011 6 / 12

ECEASST

with template (cluster resource, rdf:type, ?o) which search in the syntactical cluster. It is suffi-
cient to either retrieve one superiour concept or - if the resource itself is a concept - to find out
that it is a concept. From the moment that the concept is known the ant can start roaming the net-
work following scents that lead to clusters of that concept. When it gets into this concept cluster
it will learn more about the taxonomy and can decide based on measures for semantical similar-
ity where its triple fits best. It is sufficient that the triples are stored once in the syntactical layer
(instead of three times) and are clustered by subject as we always search for rdf:type-statements(
or rdfs:subClassOf -, rdfs:subPropertyOf-statements) where the subject is given.

In theory, the ant could also look in the rdf:type cluster to retrieve the necessary taxinomial
information, but as every ant has to locate it there would be much network traffic in this cluster
(even if it is distributed over a huge amount of nodes). This would not be consistent with our
idea of decentralization and would result in bottlenecks. However, introducing an additional
syntactical cluster layer where the rdf:type- and rdfs:subclass- statements are clustered by subject
has the advantage that the information is to some extent evenly distributed over the network.

In a first implementation [Kos09], that was also based on NetLogo [TW04], the ants had a
global knowledge of the taxinomial information to all resources. This is a possible scenario
where few concepts are used and the concept taxonomies are interlinked. Then it makes sense
to replicate the taxinomial information on each node. Figure 2 shows how the similarity on
the nodes increased with the time while the ants were storing triples using Lin’s information
theoretic similarity measure [Lin98], whereas initially there were randomly distributed triples on
the nodes. For a detailed description of the measuring and the evaluation we refer to [Kos09].

Figure 2: Measure local similarity gain

The evaluation in [Kos09] showed that the algorithms are capable of congregating triples that
are similar in concept and forming semantic neighborhoods to a certain degree. Also it could be
shown that the triple retrieval performs better than using a random walk for searching in the net-

7 / 12 Volume 37 (2011)

Towards Swarm-based Federated Web Knowledgebases

work. In a next step we want to investigate how we can reach this with distributing the taxonomy
over the network. In future work we want to implement and evaluate the suggested approach to
add a syntactical layer where the rdfs:subClassOf -, rdfs:subPropertyOf- and rdf:type-Statements
are clustered syntactically [Kos09]. This would have the effect that they would be distributed
evenly over the network. Therefore it would be a convenient solution for huge concept tax-
onomies where one would not store the whole taxinomial information on each node.

5 Reasoning Layer

In general we assume a familiarity with the basic concepts of logic programming [Llo84], de-
scription logics [BCM+03], RDF [W3C04b], RDFS [W3C04c] and OWL[W3C04a].

For a knowledgebase KB given in a description logic dialect we denote its set of terminological
axioms with KBT and its set of assertions with KBA. We refer with L 2 to the FOL subset with
equality, that only uses two different variables, constants, and monadic and dyadic predicates,
but no functions. An extended disjunctive logic program over a first order language L consists
of logical inference rules of the form L1 or . . .or Lk ← Lk+1, . . . ,Lm,not Lm+1,not Ln,where
each Li is a literal A or ¬A in L . Furthermore, not refers to negation-as-failure and ¬ to clas-
sical (explicit or strong) negation. Informally, the latter is a stronger negative statement than
negation-as-failure, since ¬A explicitly guarantees that the negation of A succeeds. For an ex-
tended disjunctive logic program P we denote its Herbrand basis by HB(P). In terms of answer
set semantics [GL91] an answer set of P is defined as: P is transformed to a disjunctive logi-
cal program P ′ without classical negation, by replacing each literal ¬A = ¬p(t1, . . . , tn) with a
positive literal A′ = p′(t1, . . . , tn) with a new predicate symbol p′. Each answer set AS of P is
defined by a stable model S for P ′, which itself a set of ground literals: AS := {A∈HB(P)|A∈
S}∪ {¬A ∈ HB(P)|A′ ∈ S};. If AS contains a pair of complementary literals A and ¬A, then
AS is the set of ground literals over L . In our context, classical negation succeeds, if we find
an explicit negation of A, i.e., a literal ¬A. Thus, for each concept or role A in a knowledgebase
KB we extend KB by default to KB′ := KB∪{¬A|A is a role or concept in KB}. Moreover, our
swarm based reasoning layer uses partial answer sets [Prz91] and brave inference as semantic
foundation: A ground atom can only be entailed from KB, if it lies in some answer set for KB.

5.1 From Terminological Axioms to Reasoning Ant Types

We now describe our swarm-based reasoning layer. We introduce the employed logic languages
and model semantics, and give a description about the creation and behavior of reasoning ants.

Before all, we want to clarify, that at this very early stage of our research on swarm based
reasoning we give an initial proof-of-concept, which, at least for the moment, consciously omits
solutions for a number of well-known severe problems related to reasoning with description log-
ics. With this in mind, we limit our swarm reasoning approach to A L C , which in comparison
to S H OI N lacks of qualified number restrictions and transitive and inverse role descrip-
tions. Our ultimate goal for the future, though, lies in the provision of reasoning support for
S H OI N . Furthermore, we disregard problems in conjunction with cyclic terminologies
and, hence, assume as input only recursion-free TBoxes. We are aware of the fact, that the

Proc. WowKiVS 2011 8 / 12

ECEASST

Herbrand model semantics below imply UNA, which cannot be guaranteed for the general case.
Multiple concurrent changes of the ABox and, with much lower frequency, of the TBox are in

general adherent to the nature of distributed knowledgebase systems. However, for the sake of
simplicity, we here omit measures to prevent or mitigate the potentially emerging inconsistencies
related to these manipulations. Thus, we expect for the moment, that ABox and TBox are not
changed as long as the reasoning layer is activated.

In order to facilitate swarm-based reasoning upon a knowledgebase KB we reduce the asser-
tional inference process for KB, i.e., application of axioms in KBT against KBA, to the behavior
of a distinct set of ants. More precisely, the reduction translates KBT into a set of ant types Sinf .
These define behavior patterns for ants to implement our forward-chaining ABox reasoning pro-
cess. Moreover, these ants probabilistically apply inference rules, which are disjunctive extended
rules derived from KBT , to the assertions of KBA in the storage layer. Here, as model theoretic
underpinning, we use partial answer set models and brave inference. Furthermore, our reasoning
process is based on an open-world-assumption with explicit negation only. That is, in each rule
all negation symbols are interpreted as explicit negation.

We now explain the three single steps of the translation from KBT to Sinf in detail. First,
we translate KBT to FOL according to [Bor96]. More precisely, all A L C formulas of KB are
translated into L 2. For a terminological axiom ta we denote its corresponding L 2 formula with
L 2(ta), and we denote the set of of formulas generated for KBT with L 2(KBT).

Secondly, we transform the formulas of L 2(KBT) into prenex-normal-form with a matrix
in conjunctive-normal-form. Apparently, we need now more than two different variables and,
therefore, use general FOL with equality at this stage. Specifically, for each terminological axiom
ta its formula L 2(ta) is transformed to a formula PCNF(ta) :=Q1x1. . . .Qnxk.C1∧ . . .∧Clwhere
Qi ∈ {∃,∀}, Ci is a clause, and x j is a variable occurring in Ci. Under the pretense that all
existential quantifiers are substituted by universal quantifiers each clause Ci = L1∨ . . .∨Ln can
be interpreted as two extended disjunctive rules

r1(Ci) := L1or . . .orLm← Lm+1, . . . ,Ln, (1)

r2(Ci) := Lm+1or . . .orLn← L1, . . . ,Lm, (2)

under answer set semantics; there Li is a literal A or ¬A for an atom A, ¬ denotes explicit
negation, and Li = ¬A or Li = A, respectively. We refer with EDLP(ta) to the set of extended
disjunctive rules for the clauses in PCNF(ta). Despite our modification of PCNF(KBT) for
creating EDLP(KBT), by replacing all existential quantifiers with universal ones, we will later
see, that our probabilistic swarm-based approach still derives a (continuously growing) subset of
all ground facts derivable from PCNF(KBT).

Eventually, we assign a reasoning ant type τ(ta) for each terminological axiom ta ∈ KBT . An
ant instance of τ(ta), intuitively, inferres new assertions by finding assertions matching to the
bodies of the rules in EDLP(ta). More precisely, it tries to find a constant substitution θ for
all variables in EDLP(ta) such that for each clause Ci occurring in PCNF(ta) either r1(Ci) or
r2(Ci) is true. For the determination of θ the ant searches the distributed storage, i.e., KBA, for
constants that appear in ground instances matching the body of r1(Ci) or r2(Ci) for every Ci. To
this end the ant efficiently tracks down relevant concepts, roles and their instances by behaving
like a storage ant exploiting the the scents of concept and URI clusters in the storage layer while

9 / 12 Volume 37 (2011)

Towards Swarm-based Federated Web Knowledgebases

performing a rd operation as described in Section 4. Furthermore, the ant embodies a local
memory to store the adequate ground atoms found during this exploration.

If a substitution θ is found, the ant creates a new assertion for each Ci: depending, if either
the body of r1(Ci) or r2(Ci) under application of θ has been verified with respect to KBA in the
previous step, the ant creates a new ground atom H jθ by randomly choosing a literal H j from
r1(Ci)’s or r2(Ci)’s head. After that, the ant behaves like a storage ant which puts H jθ , i.e., its
encoding RDF triples, into the appropriate clusters by multiple out operations.

After we have learned, that a reasoning ant τ(ta) applies EDLP(ta) only for a single matching
substitution θ at a time, it seems apparent, that, despite the earlier replacement of existential
qualifiers with universal ones in PCNF(KBT) in order to generate EDLP(ta), only ground atoms
derivable from PCNF(KBT) are entailed by reasoning ants. This has to be verified by a formal
proof in the future. As an example for the introduced transformation consider a knowledgebase
terminology KBT comprising the axioms

professortassistantv researcher,
researcheru¬professorv assistant,

assistantv ∃supervisedBy . researcher .

The corresponding PCNF(KBT) is

∀x.((¬professor(x)∨ researcher(x))∧ (¬assistant∨ researcher(x)),
∀x.(¬ researcher(x)∨professor(x)∨ assistant(x)),
∀x.∃y.((¬assistant(x)∨ supervisedBy(x,y))∧ (¬assistant(x)∨ reseacher(y))).

The corresponding EDLP(KBT) is

researcher(x)← professor(x);¬professor(x)←¬ researcher(x);
researcher(x)← assistant(x);¬ researcher(x)←¬assistant(x);
assistant(x)or professor(x)← researcher(x);
¬ researcher(x)←¬assistant(x),¬professor(x);
supervisedBy(x,y)← assistant(x);¬assistant(x)←¬subervisedBy(x,y);
researcher(y)← assistant(x);¬assistant(x)←¬ researcher(y).

Finally, we briefly compare our approach to the other recent swarm intelligence algorithm for
ontology-based reasoning by Dentler et al. [DGS09]. Both offer swarm-based forward-chaining
on RDF datasets with ontological background knowledge. However, in Dentler’s approach the
reasoning ants follow the RDF graph structure, whereas in our case they follow cents of concepts
and roles. Also, Dentler’s approach supports reasoning in RDFS while we support A L C .

6 Conclusion and Future Work

We have developed a swarm-based concept of federated, decentralized storage and reasoning for
RDF data combined with ontological information. In addition, the evaluation of already imple-
mented swarm-based storage techniques yielded promising results with respect to scalability and
adaptability. Moreover, in the reasoning layer we introduced a first swarm-based concept for
assertional reasoning with A L C vocabularies.

Proc. WowKiVS 2011 10 / 12

ECEASST

We plan to further extend our concepts for swarm-based storage and reasoning. Further inves-
tigations will be how the ants can get the taxinomial information without an extra query avoiding
additional network traffic. One idea is to add the taxinomial information to the scents, where it is
needed. This would have to be maintained by ants again. Furthermore we have to face the prob-
lem that resources can be assigned to different concepts that are not related by some ontology.
How to deal with that fact has also to be investigated in future work. Methods to prevent or mit-
igate inconsistency problems inherent to distributed reasoning have to be added. Additional, our
rule language and ant behavior patterns have to be extended to support assertional reasoning in
S H OI N . Apparent problems with DL-reasoning, e.g. cyclic TBoxes, have to be addressed.

We will evaluate the combined implementation with representative benchmark tests for query-
ing and reasoning. In particular, scalability in terms of number of node machines will be verified.

Acknowledgment This work has been partially supported by the “DigiPolis” project funded
by the German Federal Ministry of Education and Research (BMBF) under the support code
03WKP07B. This work is partly funded by Science Foundation Ireland (SFI) project Lion-2
(SFI/08/CE/I1380) and an IRCSET postgraduate scholarship.

Bibliography

[ABK+07] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, Z. Ives. DBpedia: A Nucleus for a Web
of Open Data. In In 6th Int’l Semantic Web Conference, Busan, Korea. Pp. 11–15.
Springer, 2007.

[AKO+08] G. Anadiotis, S. Kotoulas, E. Oren, R. Siebes, F. van Harmelen, N. Drost, R. Kemp,
J. Maassen, F. J. Seinstra, H. E. Bal. MaRVIN: a distributed platform for massive
RDF inference. http://www.larkc.eu/marvin/btc2008.pdf, 2008.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (eds.).
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, 2003.

[BDT99] E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to Artifi-
cial Systems. Santa Fe Institute Studies in the Sciences of Complexity Series. Oxford
Press, July 1999.

[BMM94] T. Berners-Lee, L. Masinter, M. McCahill. RFC 1738: Uniform Resource Locators
(URL). Dec. 1994.

[Bor96] A. Borgida. On the Relative Expressiveness of Description Logics and Predicate
Logics. Artif. Intell. 82(1-2):353–367, 1996.

[CF04] M. Cai, M. Frank. RDFPeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web. Pp. 650–657. ACM, New York, NY, USA, 2004.

[Den09] K. Dentler. Semantic Web Reasoning by Swarm Intelligence. Master’s thesis, Vrije
Universiteit Amsterdam, 2009.

11 / 12 Volume 37 (2011)

Towards Swarm-based Federated Web Knowledgebases

[DGS09] K. Dentler, C. Gueret, S. Schlobach. Semantic Web Reasoning by Swarm Intelli-
gence. In Proc. of Nature inspired Reasoning for the Semantic Web, ISWC. 2009.

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions on Program-
ming Languages and Systems 7:80–112, 1985.

[GL91] M. Gelfond, V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9:365–385, 1991.

[GPH05] Y. Guo, Z. Pan, J. Heflin. LUBM: A benchmark for OWL knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3):158–
182, October 2005.

[Kos09] S. Koske. Swarm Approaches for Semantic Triple Clustering and Retrieval in Dis-
tributed RDF Spaces. Technical report B-09-04B, FU Berlin, Inst. für Inf., 2009.

[Lin98] D. Lin. An information-theoretic definition of similarity. In Proc. 15th Int. Conf. on
Machine Learning. Pp. 296–304. Morgan Kaufmann, S.Francisco, CA, 1998.

[Llo84] J. W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc.,
New York, NY, USA, 1984.

[MT03] R. Menezes, R. Tolksdorf. A New Approach to Scalable Linda-systems Based on
Swarms. In Proceedings of ACM SAC 2003. Pp. 375–379. 2003.

[NSKM08] L. J. B. Nixon, E. P. B. Simperl, R. Krummenacher, F. Martín-Recuerda.
Tuplespace-based computing for the Semantic Web: a survey of the state-of-the-
art. Knowledge Eng. Review 23(2):181–212, 2008.

[Prz91] T. C. Przymusinski. Stable Semantics for Disjunctive Programs. New Generation
Computing 9:401–424, 1991.

[SKN07] E. P. B. Simperl, R. Krummenacher, L. J. B. Nixon. A Coordination Model for
Triplespace Computing. In Murphy and Vitek (eds.), COORDINATION. Lecture
Notes in Computer Science 4467, pp. 1–18. Springer, 2007.

[TA09] R. Tolksdorf, A. Augustin. Selforganisation in a storage for semantic information.
Journal of Software 4(8):798–807, 2009.

[TNS08] R. Tolksdorf, L. Nixon, E. Simperl. Towards a tuplespace-based middleware for
the Semantic Web. Web Intelligence and Agent Systems: An International Journal
6(3):235–251, 2008.

[TW04] S. Tisue, U. Wilensky. NetLogo: A simple environment for modeling complexity.
In Minai and Bar-Yam (eds.), Proceedings of the Fifth International Conference on
Complex Systems ICCS 2004. Pp. 16–21. 2004.

[W3C04a] W3C. OWL Web Ontology Language Overview, W3C Recommendation. Online
http://www.w3.org/TR/owl-features/, February 2004.

[W3C04b] W3C. RDF Primer. W3C Recommendation. World Wide Web Consortium, Febru-
ary 2004. http://www.w3.org/TR/rdf-primer/.

[W3C04c] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. Available online
at http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, February 2004.

Proc. WowKiVS 2011 12 / 12

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-primer/

