
Electronic Communications of the EASST
Volume 079 (2020)

Interactive Workshop
on the Industrial Application of Verification and Testing

ETAPS 2020 Workshop
(InterAVT 2020)

Data Race Detection in the Linux Kernel with CPALockator

Pavel Andrianov and Vadim Mutilin

8 pages

Guest Editors: Stylianos Basagiannis, Goetz Botterweck, Anila Mjeda
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Data Race Detection in the Linux Kernel with CPALockator

Pavel Andrianov1 and Vadim Mutilin2

1,2Ivannikov Institute for System Programming of the RAS
2Moscow Institute of Physics and Technology

Abstract: Most of the state-of-the-art verification tools do not scale well on com-
plicated software. Our goal was to develop a tool, which becomes a golden mean
between precise and slow software model checkers and fast and imprecise static ana-
lyzers. It allows verifying industrial software more efficiently. Our method is based
on the Thread-Modular approach elaborating the idea of abstraction from precise
thread interaction and considering every thread separately, but in a special environ-
ment, which models thread effects on each other. The approach was implemented
in the CPAchecker framework and was evaluated on benchmarks based on Linux
device drivers for data race detection. It demonstrated that predicate abstraction al-
lows keeping a false alarms rate at a reasonable level of 52%. Moreover, it did not
miss known real bugs found by analysis of commits in the Linux kernel repository
thus confirming the soundness of the approach.

Keywords: Data race, Thread-Modular approach, Linux kernel.

1 Introduction

Multithreaded software is widely spread nowadays for efficient usage of multiple CPU cores.
That is also correct for operating systems, which may contain a lot of parallel activities, for
example, system calls, interrupt handlers and so on.

In addition to generic bugs, which are common for all kinds of software, multithreaded pro-
grams may contain specific ones, related particularly with a parallel execution: deadlocks and
races.

Data races are an important subclass of race conditions and are defined as a situation when a
simultaneous accesses to the same memory take place from different threads, where one of the
accesses is a write. In general, a data race may not lead to failure directly, but it is a symptom of
an error.

There were developed a lot of different approaches for data race detection. Usually, they are
divided into static and dynamic ones. Further, we will concentrate mostly on static approaches,
which may guarantee the correctness of the code under certain assumptions.

Precise approaches to model checking are based on considering all possible thread interleav-
ings. Thus, they allow to be very precise and consider different complicated cases, like lock-free
synchronization and weak memory models. As a drawback, they have spent a lot of resources
(time and memory) per a verification task and thus can not be applied to large benchmarks.

An opposite case of static verification is a data flow-based analysis. The corresponding tools
are very fast but not so precise as model checkers. Particularly, the simple static analysis can not
perform a path sensitive analysis. As a result, there are produced a lot of false alarms and some

1 / 8 Volume 079 (2020)



Data Race Detection in the Linux Kernel with CPALockator

of the tools apply unsound filters to remove a part of false alarms, and it may lead to a missed
bug.

Our goal was to develop a tool that unites advantages both fast data flow analysis and precise
model checking. One of the ideas to build such an approach is a sequential combination of two
stages: the first stage is an imprecise analysis, which produces hints for the second stage, which
is a traditional model checking. The other idea is a thread-modular approach, which considers
each thread separately, but in a special environment [HJMQ03, GPR11].

We implemented a thread-modular approach extended with projections in the CPAchecker
framework 1. CPAchecker contains different kinds of analysis (CPAs), which may be combined.
We extended several CPAs for support of the thread-modular approach with projections and
implemented two specific CPAs: ThreadCPA for thread analysis and LockCPA for tracking syn-
chronization primitives.

We successfully applied the CPALockator tool to a set of benchmarks that are based on the
Linux device drivers. The final rate of false alarms is quite low – 52%. We performed an analysis
of a set of existing fixes in Linux drivers, and the tool can detect 5 of 8 known bugs. The rest of
them are missed due to timeout.

2 Basic Idea of the Thread-Modular Approach with Projections

Consider a simple program, which has only two active threads. Figure 1 presents a simple model
example, which uses an ad-hoc synchronization. The first thread initializes global data (in this
case, a global variable g) and then sets a flag, meaning the shared data are ready. The second
thread is allowed to use the shared data only after setting the flag. Thus, there is no data race on
a global variable g.
volatile int g = 0;
Thread1 {
1: g = 1;
2: d = 1;
3: ...
}

volatile int d = 0;
Thread2 {
4: if (d == 1) {
5: g = 2;
6: }
}

Figure 1: An example of a small program

A suggested approach is based on a thread-modular approach. The approach considers each
thread separately but in a special environment, which is constructed also during the analysis.
The environment computation is based on the analysis of all threads, as every thread is a part of
the environment for other threads. For each thread, a set of its actions, which may affect other
threads, is collected. The actions include modification of shared variables, acquiring synchro-
nization primitives and so on. Environment precision strongly affects the precision of the whole
analysis. However, there is the main question, how to compute and represent the environment
efficiently.

In a sequential analysis, there is a successful technique, which allows reducing the number
of considered program states – an abstraction. It allows to abstract from minor details of a

1 https://cpachecker.sosy-lab.org/

InterAVT 2020 2 / 8



ECEASST

program and considers general (abstract) state. Each abstract state may correspond to a set of
real (concrete) program states. This idea allows to significantly increase the efficiency of the
analysis.

The key idea of the suggested approach is an extension of abstraction not only to the program
states but also to the operations of a thread. Adjusting the level of the abstraction, it is possible
to choose a balance between speed and precision of the tool.

Figure 2 shows a part of the Abstract Reachability Graph (ARG) for the first and the second
threads from figure 1. There is no interaction considered, so this is not a final step of the analysis.

g → 0
d → 0 ![d == 1]g → 0

d → 0 g = 1

g → 1
d → 0 d = 1

g → 1
d → 1

Thread 1 Thread 2

g → 0
d → 0

#A1:

#A2:

#B1:

Figure 2: Abstract transitions for two threads without any interaction

The analysis in the example is based on a simple Value Analysis, which tracks only explicit
values of variables. A transition contains an abstract state and an abstract operation. The first
abstract state in both threads contains information that both global variables (d and g) are equal
to zero (g→ 0). After performing an operation g = 1 (transition #A1) the value of g is updated
into 1 (g→ 1) in the second abstract state (transition #A2).

After constructing an ARG for two threads separately, we need to consider the influence of
threads to each other, i.e. to construct an environment. For every thread operation, we compute
its projection – a representation of operation in a thread for other threads as an environment. For
example, modification of local variables can not affect on other threads, so the corresponding
projection is empty. Modification of a global variable may affect other threads, so the projection
may be equal to the original transition or overapproximate it, for example, by abstraction from
a precise assigned value. A projection may contain not only information about action but also
a condition for performing this action, so-called guard. Consider a transition #A1. We may
represent the corresponding projection in the following way: if the value of g equals zero, it may
be changed to one. In other words, the projection consists of two parts: a guard ([g== 0]) and an
action (g→ 1). The guard corresponds to a predecessor abstract state and an action corresponds
to an operation.

The figure 3 presents computed projections for the first thread. There are two transitions,
which may affect the global variables: #A1 and #A2. We compute the corresponding projections:
#P1 and #P2. Then every projection has to affect the second thread, i.e. apply to all possible
(according to the guard) transitions of the second thread. We apply the projection #P1 to the
transition #B1, as the state is compatible with the guard of the projection. Only after that, we
may apply the projection #P2 to the new transition #B2, which requires g to be equal to one. And
only then the second thread may go through a new transition #B3, which discovers new paths.
Note, the figure presents only projections for the first thread, in complete ARG there should be
also projections for the second thread as well.

For data race detection we have to find two transitions, which modify the same variable. The

3 / 8 Volume 079 (2020)



Data Race Detection in the Linux Kernel with CPALockator

g → 0
d → 0 g = 1

g → 0
d → 0 ![d == 1]

g → 0
d → 0 g = 1

g → 0
d → 0 g = 1

g → 1
d → 0 d = 1

g → 1
d → 1

Thread 1 Thread 2

g → 0
d → 0

Projection

g → 1
d → 0 ![d == 1]

g → 1
d → 0

g → 1
d → 0 d = 1

g → 1
d → 0 d = 1

g → 1
d → 1 [d == 1]

g → 1
d → 1 g = 2

#A2:

#A1: #B1:

#B2:

#B3:

#B4:

#P2:

#P1:

Figure 3: Application of projections to the second thread

example has potential candidates: #A1 and #B4. Now, we should check, if the two transitions
may be executed in parallel. That means, that the corresponding abstract states must be a part of
one global state, i.e. they must be compatible. In this case, the partial states are contradicting
each other, as one has g→ 0 and the other g→ 1. So, the corresponding transitions can not be
executed simultaneously. Thus, we conclude there is no data race for g. Note, there is a data
race for d (transitions #A2 and #B2), but it may be considered as lock-free synchronization, and
a potential race is a part of its implementation.

The suggested approach provides a lot of possible options and configurations for targeting to
a particular task. A projection may be represented by more or less precise abstraction. Several
projections may be joined altogether or considered separately. An example of more abstract
transitions is presented in figure 4.

g → 0
d → 0

g = 1
d = 1

g → 0
d → 0 ![d == 1]

g → 0
d → 0 g = 1

g → *
d → 0

g = 1
d = 1

g → 1
d → 0 d = 1

g → 1
d → 1

Thread 1 Thread 2

g → 0
d → 0

Projection

g → *
d → * [d == 1]

g → *
d → * g = 2

⋁ ⋁

#A1:

#A2:

#B1:

#C2:

#C3:

#P3:

Figure 4: Application of projections to the second thread

The two initial projections (#P1 and #P2) are joined into a single one (#P3). Usually, it leads
to losing some information, for example, here we lost a precise value of variable g. The action of
projection also becomes more complicated. The second thread can not identify a precise value of
the variables, as both of the variables are now equal to zero or one. The simple kind of analysis
operates only with single explicit values of variables and both variables are considered to be
equal to any random value. Now, transitions #A1 and #C3 become compatible, which means,

InterAVT 2020 4 / 8



ECEASST

that the race is reported on variable g.
The level of abstraction strongly affects the precision of the analysis and its speed, but the

analysis always remains sound.

3 Data-Race Detection Algorithm

Data race detection algorithms may be divided into two stages: reachable states analysis and
searching of pairs, which can form a race. In our case, the first subtask is related to ARG
construction and may be solved with different configurations.

As we have already discussed, an ARG from abstract transitions is constructed with the chosen
configuration of the CPALockator. Note, the abstract transitions in the graph are reachable with
a certain abstraction level, so, they may not be reachable in a real execution. For refinement of
the abstraction, we use a CEGAR algorithm (Counterexample Guided Abstraction Refinement).
Note, a CEGAR algorithm was reused without significant modifications. However, it allows
refining only path in a single thread, i.e. it can not identify contradictions between operations
in different threads. Anyway, it is not a fundamental limitation of the approach, and a possible
extension of the CEGAR algorithm for the thread-modular approach will allow obtaining more
precise results.

After computation of the ARG we should find those transitions, which could form a data
race. Usually, a race condition is defined as a situation, where simultaneous access to shared
memory from different threads takes place. Two main questions, which appear for static data
race detection, are the following: how we can determine, that the accesses are performed to the
same memory and how to determine if the accesses are simultaneous. Further, we will discuss
both of the features of the approach.

In real software, there are a lot of different operations with pointers, structures, and more
complicated data. The variety of pointers breaks any kind of alias analysis. Moreover, most of
the approaches require the pointers to be correctly initialized, which is difficult to reach while
analyzing libraries, modules and so on. Thus, we use a BnB memory model [AFM+17], which
divides all memory into a disjoint set of regions. Every region corresponds to a specific data
type or a structure field (if an address-of expression is not used for it). According to the memory
model, we consider access to the same region as access to the same memory. The BnB memory
model has certain limitations. First of all, casting and address arithmetic may lead to a missed
bug, because the two accesses will not be placed in the same region. Also, the memory model
may lead to false alarms in cases, when two pointers of the same type never point to the same
memory but are placed in the same region.

If we have two accesses to the same region, we have to check, if two accesses are taking place
simultaneously. We use the already mentioned notion of compatibility of the corresponding
transitions. Two partial states are compatible, if they may be parts of a single global state. If the
partial states are not compatible, that means, the corresponding transitions can not be executed
in parallel. Thus, this approach is an extension of a Lockset algorithm, which defines a data
race, as a pair of accesses with a disjoint set of locks. A compatibility check uses different kinds
of analysis, including analysis of synchronization primitives, predicate analysis, thread analysis,
hence the approach is more precise than the default Lockset algorithm.

5 / 8 Volume 079 (2020)



Data Race Detection in the Linux Kernel with CPALockator

4 Evaluation on the Linux Device Drivers

CPALockator 2 tool was evaluated on a benchmark set, which is based on device drivers of the
subsystem drivers/net of the Linux kernel v4.2.6 3. For each kernel module, a verification task
was prepared with the help of the Klever framework [NZ18]. For 473 modules it prepared 425
tasks for CPALockator. Detailed information about its verdicts is presented in the table 1.

The table 2 presents the results of the analysis of warnings. We will discuss them further.

Tasks Description
261 Safe (no bugs)
22 Unsafe (races found)
142 Unknow (timeout)

Table 1: Overall verdicts

Number Percent Description
41 48% True (bugs)
25 29% Imprecise scenario model
8 9% Imprecise memory model
7 8% Specifics of interrupts
4 5% Other imprecisions in the analysis

Table 2: Analysis of warnings in Linux kernel modules

41 warnings of 85 (48%) correspond to real bugs. 10 of them are related to so-called “benign”
races. It is, for example, a race on statistics counter or during printing debug information. The
main part of bugs corresponds to a situation when a new thread is created while an initialization
process is still uncompleted. Thus, the new thread may access uninitialized memory or not al-
located memory. The situation usually occurs, when registration of driver handlers is performed
before the complete initialization of driver data. Note, several warnings may be outputted per
one module and these 41 warnings correspond to 15 modules.

44 of 85 warnings (52%) are false alarms. The main part of them (25 warnings) is related
to the imprecise communicating scenario model, which defines scenarios of driver activities.
The issue is not related to the CPALockator tool and is caused by an internal part of the Klever
framework. So, the corresponding warning is correct for the verification tool, but the data race is
impossible in a real execution. For example, an imprecise communicating scenario model may
consider some driver activities as parallel, but in a real execution, the corresponding scenario
is impossible. Other examples – absent models of external functions, which are important for
analysis, or incorrect driver input data are also a responsibility of Klever task generator.

The main part of false alarms, related to the CPALockator tool, is due to imprecise memory
model – 8 warnings. To be conservative CPALockator may consider different memory as the
same (BnB model) and produce a warning about potential simultaneous access, although the
accesses are not to the same memory. This is mostly happening for structure fields.

One more important reason of false alarms is low-level constructions in the Linux kernel.
Currently, an interrupt handler is considered to be executed like an ordinary thread, but actually,
it has certain specifics. For example, the execution of the interrupt handler may be interrupted
only in special cases and only by another interrupt. It means, that the interrupt handler is executed
atomically in parallel with an ordinary thread. Moreover, the registration of an interrupt handler
may not mean that it becomes active. In some cases interrupts should be activated in the device.

2 CPAchecker-theory-with-races@32609
3 https://gitlab.com/sosy-lab/software/ldv-benchmarks.git , directory linux-4.2.6-races

InterAVT 2020 6 / 8



ECEASST

Small classes of false alarms are dedicated to the analysis imprecision: shared analysis, prob-
lems with complex data structures and model variables.

5 Evaluation on the Set of Known Bugs

Analysis of causes of false alarms was performed on a set of benchmarks, which are based
on fixes of existing bugs in stable Linux kernel versions in 2014 4. 795 commits are extracted
using keywords5 from the whole set of 4047 commits. Then we performed a manual analysis of
commits and filtered only those commits, which are related to data races and contain only lock-
based synchronization primitives and are in kernel modules, see details in the table 3. We have
got 13 modules after that and launched the Klever framework. It failed to prepare verification
tasks for 5 modules, hence the resulting set contains 8 verification tasks6.

Table 3: Constructing a set of commits with known bugs for evaluation

Total amount Description
4047 All commits
795 Extracted using keywords
43 Related only to data races
28 Use lock-based synchronization
13 In kernel modules
8 Klever prepared corresponding tasks

The results of launching CPALockator on 8 verification tasks with known bugs are presented
in the table 4. The bugs are marked by commit identifiers. We run CPALockator on the tasks
prepared by Klever framework for the repository before corresponding commit. For checking
that the bug is not found after the fix we also launched CPALockator on a verification task
prepared for the repository after corresponding commit.

Table 4: Evaluation on known bugs in stable versions of Linux kernel

Commit Module Result Comment
0e2400e drivers/char/virtio console.ko +
7357404 fs/hfsplus/hfsplus.ko ± Found with limited CEGAR iterations
f1a8a3f drivers/net/bonding/bonding.ko ∓ Found a nontarget bug with limited CEGAR iterations
1a81087 net/ipv4/tcp illinois.ko ± Nontarget bug was found
f0c626f drivers/target/iscsi/iscsi target mod.ko ∓ Found a nontarget bug with limited CEGAR iterations
aea9dd5 fs/btrfs/btrfs.ko −
10ef175 sound/soc/snd-soc-core.ko − Timeout
4036523 drivers/gpu/drm/i915/i915.ko −

• CPALockator found two bugs fixed in commits 0e2400e and 7357404. For the tasks pre-
pared after the fix, the corresponding warnings are not found. It means that the bugs are
detected correctly. The bug in 7357404 was found only if the CEGAR iterations are lim-
ited, in another case, there will be a timeout.

4 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
5 fix, error, race, bug, failure, crash, etc
6 https://gitlab.com/sosy-lab/software/ldv-benchmarks.git , directory ldv-commit-races

7 / 8 Volume 079 (2020)



Data Race Detection in the Linux Kernel with CPALockator

• For three more modules, CPALockator outputted warnings for the same memory location
mentioned in the bug but for a different access location in the code. We call them nontarget
bugs. For f1a8a3f and f0c626f the CEGAR iterations also must be limited to avoid the
timeout.

• Three modules are too large and too complex and exceed 15 minutes timelimit. Note, the
timeout is achieved in the first iteration of CEGAR.

Thus, 5 of 8 bugs were found, and for the rest 3 modules, there were unknown verdicts. The
results confirm the soundness of the approach.

6 Conclusion

One of the main limitations of the approach is a size of verified code and its complexity. We do
not discuss it much, as it is well known for any static verifier tool. However, CPALockator is
able to solve real-world tasks, which are based on Linux device drivers, which shows practical
benefit of the tool.

We also mentioned BnB memory model, which also affects on the verification process. This
is a trade off between speed of the analysis and its precision.

One more limitation of the approach is support only lock-based synchronization primitives.
Different atomic constructions, barriers are skipped for now.

We do not speak about function pointers, C constructions and so on, as it is not related to
the approach itself. CPAchecker framework contain different kinds of analysis, for example,
function pointer analysis, and they may be included into CPALockator if it is necessary.

The results on Linux device drivers are quite good, as the tool demonstrates a false alarms
rate of 52%. Moreover, it does not miss real bugs on our benchmark set, that confirms the
soundness of the approach. Thus, we may conclude that the tool is practically valuable for data
race detection.

Future plans include further improvements in the overall approach: support new synchroniza-
tion primitives, investigate different combination with other analyzes.

Bibliography

[AFM+17] P. Andrianov, K. Friedberger, M. Mandrykin, V. Mutilin, A. Volkov. CPA-BAM-
BnB: Block-Abstraction Memoization and Region-Based Memory Models for Pred-
icate Abstractions. In Proceedings of TACAS. Pp. 355–359. 2017.

[GPR11] A. Gupta, C. Popeea, A. Rybalchenko. Threader: A Constraint-based Verifier for
Multi-threaded Programs. In Proceedings of CAV. Pp. 412–417. Springer, 2011.

[HJMQ03] T. A. Henzinger, R. Jhala, R. Majumdar, S. Qadeer. Thread-Modular Abstraction
Refinement. In Proceedings of CAV. Pp. 262–274. Springer, 2003.

[NZ18] E. Novikov, I. Zakharov. Verification of Operating System Monolithic Kernels With-
out Extensions. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice. Pp. 230–248. Springer, 2018.

InterAVT 2020 8 / 8


	Introduction
	Basic Idea of the Thread-Modular Approach with Projections
	Data-Race Detection Algorithm
	Evaluation on the Linux Device Drivers
	Evaluation on the Set of Known Bugs
	Conclusion

