Electronic Communications of the EASST

Volume 82 (2022)

1 1th International Symposium
on Leveraging Applications of Formal Methods, Verification
and Validation

Doctoral Symposium, 2022

Towards Code-centric Code Generators
Daniel Busch

13 pages

Guest Editors: Sven Jérges, Salim Saay, Steven Smyth

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eﬁ ECEASST

Towards Code-centric Code Generators

Daniel Busch

Chair for Programming Systems, Faculty for Computer Science, TU Dortmund University

Abstract: This paper presents a novel approach to code generation. While common
code generator approaches lack in support for code evolution and maintenance such
as refactoring, the presented Code-centric generator (CCG) approach attempts to
overcome these issues. Instead of mixing generator abstractions and actual code
snippets, CCG provides a layer between the generator and prototypical target code.
The new layer provides the ability to map code generator operations directly onto
code AST subtrees, and generates the resulting generators based on these mappings
and the prototypical target implementation.

Keywords: Code Generation, Abstract Syntax Tree, Model-driven Engineering,
Domain-specific Languages, Tooling

1 Introduction

Code generation is an important part of Model-driven Engineering (MDE) [V6109, Sel03]. It
is widely used to transform (graphical) models into executable code or structured data formats
[Fow10]. There are different approaches for different purposes, but each approach has some
major drawbacks, so no current solution is truly satisfactory.

Especially in the context of full code generation [KTOS], generated code can become quite
large and complex. Like any other software, generated code must be maintainable and evolv-
able as requirements may change over time. Template-based generators are probably the most
commonly used generators for full code generation. They are strongly focused on the desired
target code they are supposed to produce. Many parts of the resulting code are hard-coded, and
dynamic parts that should be filled with data extracted from MDE models are explicitly marked
as such. Template-based generators scale well because they are easy to develop. However, most
approaches are difficult to maintain and evolve as new or different requirements arise. This
problem is caused by the fact that hard-wired pieces of code are strings representing parts of the
desired code rather than parsable pieces of code. As a consequence it is often not possible to
use common development tools that allow refactoring, linting, code styling, static analysis, or
similar.

In order to exploit the advantages of template-based generators and to overcome their disad-
vantages, this paper proposes the approach of Code-centric Generators (CCG).

This paper will first provide a more in-depth view of traditional template-based generators,
their capabilities, advantages, and also their drawbacks in Section 2. Next, Section 3 presents
the newly developed CCG approach, which works on parsable code and its abstract syntax tree
(AST) instead of simple string representations. After that, an example is used to illustrate the dif-
ferences in generator development for template-based generators and Code-centric Generators,
as well as the similarities and differences in their structure and overall properties in Section 4.

1/13 Volume 82 (2022)

Towards Code-centric Code Generators E}

2 Common Code Generator Approaches

Code generation is prevalent in the MDE landscape. Most modeling tools offer the ability to
generate code from modeled instances. Full code generation solutions even offer the ability to
generate entire programs, which can be quite large and complex, so code generation must scale
to meet the demands of such scenarios. The following paragraph introduces the template-based
generation approach, so that the next section can highlight the differences to the CCG approach
presented in this paper.

Template-based Generators An output-based way to generate code is the template-based ap-
proach [SLS18]. This approach is most commonly used when larger generation needs arise,
such as in full code generation environments. The generators consist of static parts and dynamic
parts. Static parts are hard-coded fragments of the desired target, that should be generated. To
take full advantage of the generator approach in terms of using the data present in the generator’s
source, dynamic parts are used. These parts are intertwined with the static parts in the form of
placeholders, statements, or expressions. All of them are used to either bring data of the source
into the desired generation target or to modify the structure of the generation target depending
on the source.

Famous examples of template-based generators are Xtend string templates [Betl16], Free-
Marker', or Velocity?. All of these examples use their own expression languages that can be
used alongside static strings to produce arbitrary code.

The main advantage of template-based generators is the simplicity of their implementation.
The implementations are language agnostic, so developers do not need to use the same language
as the source and target. In addition, because of their static parts, which are only supplemented
by dynamic parts, the overall implementation steps resemble "common" software development
processes of the target.

At the same time, this focus on the target may also be the greatest disadvantage of some ap-
proaches. By adding dynamic parts, static parts are no longer parsable or executable as instances
of their target language. This leads to problems when maintaining or evolving the code for fur-
ther development. Commonly used tools such as linters, refactoring tools, or other checkers do
not work for template generators. As a result, desired changes can lead to round-trips, as their
changes must be checked for different source inputs. Undiscovered resulting structures that are
the result of edge-case source inputs may not be discovered, leading to unexpected problems and
errors. While this is a problem for the template-based generator approaches mentioned above,
it is not the case for every approach. Thymeleaf, for example, uses natural templates to over-
come this problem . These templates add dynamic parts to static parts of the template while
still maintaining correct syntax. Only when the generation process is triggered will the dynamic
parts be processed and result in substitutions in the resulting output. However, this approach is
only viable for a small set of targets, as it must be designed around the underlying syntax. In the
case of Thymeleaf, natural templates are offered for HTML, JavaScript, and CSS.

U https://freemarker.apache.org
2 https://velocity.apache.org
3 https://www.thymeleaf.org

ISoLA DS 2022 2/13

Eﬁ ECEASST

3 Code-centric Generators

While template-based generators have proven feasible for large projects and full code generation,
they may lack proper maintainability and evolution support because existing tools are not appli-
cable to generator templates. To overcome this problem, this paper proposes Code-centric Gen-
erators (CCG), which try to eliminate the drawbacks of template-based generators by generating
them from prototypical code implementations instead of manually implementing the templates
directly. Making the CCG approach a generator for code generator templates.

CCG focuses on generating from prototypical implementations of the desired target. But
instead of discarding this prototype and manually translating it into template generators, CCG
uses prototypes as a central artifact not only for the creation of generators, but also for further
evolution and maintenance.

To accomplish this, CCG relies on the following:

1. A prototype of the desired target. This is a concrete instance of one of the target outputs
that the resulting generator should be able to create. As a result, by adding dynamic parts,
this prototype should be able to produce every feature and every aspect that possible target
outputs are intended to contain.

2. A CCG meta-description. Besides a reference to the prototype (e.g. in the form of an
absolute file path), this description file must contain the mappings of generator operations
to AST subtrees. Details on this mapping are described later.

3. A tool for creating the meta-description and generating the resulting generator or template.
Since some parts of CCG rely on parsing an AST, computing IDs, and generating code (in
the form of the code generator), the entire CCG approach relies on tool support. Similar
to the reliance of the template-based approach and its syntax, which has to be realized as
an internal or external DSL. As the description of such a tool is not central to the overall
idea behind this approach, more about this tooling can be read in Section 6.

In its simplest form, the CCG meta-description just points to a prototype code file without any
additions. This would allow to generate exactly the code contained in the prototype. However,
since generators are usually intended to enrich code with information extracted from an under-
lying model, additional data can be provided to modify the prototype code. Although the data
is not provided in the CCG meta-description, the necessary operations, that are comparable to
the dynamic part of template-based generators, can be specified. For this purpose, CCG allows
for references to arbitrary nodes of the prototype’s AST nodes. Each node is assigned an ID
that is computed based on the node’s path from the root of the AST to the node. To modify the
prototype for the resulting generator, CCG references to AST nodes (i.e. subtrees) can be one of
four different operations:

1. Substitutions should be replaced by arbitrary input data in the resulting generated code.
To achieve this, an input is expected to be inserted instead of the selected AST node and
its subtree.

2. Deletions allow subtrees of the AST to be omitted.

3/13 Volume 82 (2022)

Towards Code-centric Code Generators Eﬁ

Model
(Source)

fed into

generates

L Product
SO -:-a—» Generator E{:€}> Code
N Description (Target)

generates

Prototype
Code

Figure 1: Overview of CCG development artifacts

3. Conditions lead to the expectation of boolean statements. Depending on these statements,
the subtree of the selected node is either included in the generated target or not.

4. Repetitions can behave in one of two ways. First, they can behave similarly to conditions
when no node in its subtree contains another substitution of condition markings. In this
case, they expect a numeric value indicating how many times their subtrees should be
repeated in the resulting target.

Second, they may also contain further substitutions or condition markings in their subtree.
Accordingly, they expect a collection of data that fits all subtree operations. The number
of repetitions of the subtree then depends on the number of entries in the provided collec-
tion. This allows parts of the prototype code to be repeated for recurring patterns in the
underlying model from which the data is extracted.

Based on the aforementioned reference to the prototype code, the computation of IDs for AST
nodes, and the mapping of the presented operation to node IDs, it is possible to generate template
generators that accept data according to the mapped operations and enrich the modeled template
to produce the desired target code.

Since the computation of the node IDs and thus the mapping of the operations is a rather
abstract task, tool support is crucial for CCG. These tools should accept paths to prototype code
files, parse them, assign IDs to each AST node, and also allow users to map operations to each
node. Furthermore, the generation process of the resulting generator should also be handled by
the same tool, taking into account the data provided.

Figure 1 shows all the artifacts that are part of the CCG workflow. It is apparent that the
prototype code is not just a by-product of the workflow, but rather a central artifact that the
CCG file references and from which the generator is created. Blue colored artifacts are parts
that can be edited during evolution and maintenance. Changes to these artifacts are reflected in
the resulting generator and thus in the generated product code. The latter two, colored yellow,
remain untouched at all stages of development and are only products that are used. The following
section provides an example to give a further insight into the CCG approach and its artifacts.

ISoLA DS 2022 4/13

Eﬁ ECEASST

4 Example & Comparison

The following section covers a simple example of generating a minimalist HTML web page that
contains some images and captions. Generators for this example will be presented in a traditional
template-based approach and also using the CCG approach. This small example will be enough
to show some of the problems that can occur with a template-based generator and how CCG can
eliminate these problems.

Scenario In this example, the generators should generate a simple HTML web page that con-
tains only some images and corresponding captions. Generators should therefore expect an arbi-
trary collection (e.g. list, array, set, etc.) containing objects that have an attribute for the image
path and another attribute for the corresponding captions.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>EASST Example</title>

5 </head>

6 <body>

7 <figure class= >
8

9 <figcaption>

10 Lorem ipsum dolor sit amet

11 </figcaption>

12 </figure>

13 <figure class= >
14

15 <figcaption>

16 Consectetuer adipiscing elit
17 </figcaption>

18 </figure>

19 </body>

20 </html>

Listing 1: Example expected target HTML

After using the generators to create our desired target web page, we want to make sure that
our generated HTML meets some conditions. We want to use an HTML linter to make sure
that no HTML syntax is violated and also that each "img" tag has an "alt" attribute for better
accessibility. Of course, for a small and simple example like this, checking these conditions
can easily be done by hand, but one can easily understand that this is tedious and error-prone
for larger scenarios. Especially for full code generation scenarios, where entire applications are
generated, automated tools are essential to maintain quality standards.

The following paragraphs cover this example. First, a template-based generator is used to
generate the described target. Then the same problem is solved using the CCG approach. In
addition to creating the generators, the example covers the use of a linter as described earlier.
Finally, the advantages and disadvantages of both approaches are compared.

5/13 Volume 82 (2022)

Towards Code-centric Code Generators Eﬁ

Template-based Generator When developing a template-based generator, it may be beneficial
to first create a prototypical target program. In this example, the prototype is the code shown
in Listing 1. To create a template-based generator from this prototype, developers typically
identify which parts of the code should remain static and which need to be filled dynamically.
The dynamically populated parts are fed data from the underlying model for which the target is
to be generated.

For the target described earlier, it is easy to see that one of the blocks with the class IMG-
CAPTION-BLOCK must be repeated for each input entity, while the other block with the same
class can be omitted. Thus, the block will probably be wrapped in a control sequence that allows
for iterations and repetitions depending on the input data. Within this block, the value of the
image source must also be dynamic. Therefore, the value of the source should be replaced by
an expression that inserts data from the entity of the current iteration step. The same should be
done for the content inside the caption tag below the image.

An example implementation of such a template is shown in Listing 2 in the form of an Xtend
string template with imaginary entities and properties.

1 <!DOCTYPE >
2 <html>
3 <head>
4 <title> </title>
5 </head>
6 <body>
7 « »
8 <figure >
9
10 <figcaption>
11 « »
12 </figcaption>
13 </figure>
14 « »
15 </body>
16 </html>

Listing 2: Example Xtend string template

After creating the template, a linter should be used to check some properties of the code. In
this case, as mentioned earlier, it should be ensured that each image tag also has an ALT attribute
to improve accessibility. Unfortunately, it is not possible to use the linter on the template, since
its representation with the embedded dynamic parts is not parsable.

Consequently, the linter must be used on the prototype to check for the desired properties.
After checking for and possibly adding the missing attributes, the code generator developer has to
repeat the earlier steps of identifying the static and dynamic parts, and introducing the structural
and insert expressions. These additional steps, which must be done multiple times, result in
round-trip overhead.

This example is quite small and simple, so this could have been done manually. However, this
may not be the case for more complex generators or projects where many generators are used,
such as full code generation projects.

Not being able to use the linter because the template is not parsable is a problem that applies to

ISoLA DS 2022 6/13

Eﬁ ECEASST

almost any supporting tool that requires parsing. None of these tools, such as refactoring helpers,
static analysis checkers, and others, are usable with these templates.

1A

2 "prototypePath": "/path/to/prototype",

3 "operationMappings": [

4 {

5 "operationType": "deletion",

6 "nodeId": "d2elceb"

7 b

8 {

9 "operationType": "repetition”,
10 "nodeId": "e78£543"

11 b

12 {

13 "operationType": "substitution",
14 "nodeId": "a98931d"

15 b

16 {

17 "operationType": "substitution",
18 "nodeId": "87d4eeb"

19 }

20]

353
—
—

Listing 3: Example CCG file

Code-centric Generator The code-centric approach uses the prototype in Listing 1 as a cen-
tral development artifact. For this purpose, the prototype should be stored along with all other
source code files. A newly created CCG file will store the path to the prototype in order to resolve
a reference to it. The CCG file will also contain the operation mapping information and forms a
new abstraction layer between the prototype code and the actual generator that will be generated
in a later step. Similar to the template-based approach, developers should first identify which
parts of the prototype are static and which parts are dynamic. Instead of replacing the dynamic
parts with expressions in some kind of template, the desired operations are mapped to the nodes
that have been identified as dynamic. In this case, the subtree of the second IMG-CAPTION-
BLOCK block element is mapped to the deletion operation, the first IMG-CAPTION-BLOCK block
element is mapped to a repetition operation, and the value of the image source and the content of
the paragraph tag are mapped to substitution operations. The mapping is done by associating the
specified operations with previously computed node IDs. The IDs should be computed with tool
support, see Section 6 for more information. Listing 3 shows an example CCG meta-description
in JSON format. Although the JSON is human-readable, it is not possible for humans to see
which operation is mapped to which AST node. Therefore, Section 6 proposes some graphi-
cal representations that allow operations to be edited and visualized directly in more practical

7/13 Volume 82 (2022)

Towards Code-centric Code Generators E}

representations of the AST.

The resulting CCG file now contains the same information about the static and dynamic parts
of the generator as the template shown in Listing 2. The generator for the CCG approach can
now be generated. This should also be done with tool support (see Section 6). The result should
be a generator very similar to the template-based generator.

If we now want to use a linter to guarantee certain properties of the HTML, this can easily
be done. The linter can be applied to the prototype and the missing ALT attribute can be added
automatically. When the developer rebuilds the CCG generator, the new attribute is also added
to the generator and no information about dynamic code is missing. The introduction of a new
abstraction layer has made the prototype an essential part of the generator development, allowing
developers to use any tool that requires parsable code. This advantage eliminates round-trips and
opens up new possibilities for the evolution and maintenance of code generators.

Comparison The two examples show similarities and differences in the development of code
generators and especially in the later lifecycle regarding code evolution and tool support.

Presumably, both approaches start by building a prototype to be sure of how the target will be
built. However, only CCG uses this prototype as a central artifact for development. Template-
based approaches may discard this prototype once the final code generator has been created. Both
approaches also need to identify which parts of the code generator should be static and which
should be dynamic. Template-based generators then wrap these parts into the desired template
syntax (e.g. Xtend string template syntax in this example). CCG instead specifies the operations
needed for the dynamic parts in a separate file that contains mappings of these operations to the
prototype’s AST nodes.

By using the prototype as a central artifact, CCG allows developers to use tools they are
accustomed to. Any change to the prototype can also be reflected in CCG code generators, by
simply regenerating the resulting code generator. If developers want to use supporting tools with
template-based approaches, they have to use them on the prototype (if it has not been omitted)
and make sure to propagate the changes manually. This can result in significant round-trips.

In addition to better tool support, CCG also allows for better testing. Template-based genera-
tors require output to be executable, and therefore must be used to generate exemplary instances
of the generated code to enable testing. CCG, on the other hand, allows testers to utilize the
prototype used for the generator to run their tests. Since the prototype must contain every feature
that arbitrary outputs of the generator should be able to contain, tests can also be more certain
to cover all possible instances of the outputs. With template-based generators, testers must also
trust the completeness of the exemplary instances.

Figure 2 shows the artifacts of the template-based generator approach. The red colored proto-
type code may have been discarded, while the blue colored artifacts are edited during evolution
and maintenance. The colors used are the same as in Figure 1, so that both approaches can be
easily compared.

While this simple example illustrates the benefits of CCG, there are also some challenges that
need to be investigated. Section 6 identifies some challenges and provides a brief outlook on
how they might be addressed.

ISoLA DS 2022 8/13

Eﬁ ECEASST

Model

(Source)

fed into

translated into generates
. Product
Prototype String Generator Code
Code Template (Target)

Figure 2: Overview of template-based generator development artifacts

5 Related Work

In addition to the code generation approaches already presented, there are several disruptive
and innovative approaches. All of these alternative approaches have different advantages and,
like CCG, try to eliminate drawbacks of existing techniques. This section describes two of
these alternative approaches: Genesys [Jor13] and Machine Learning (ML)-based approaches.
Genesys is covered because some of its aspects are similar to CCG, while ML-based approaches
seem to be promising for the future.

Genesys An approach to code generation with a focus to service orientation and graphical
modeling is Genesys [Jor13]. It strictly separates the output description of generators and the
logic of the generator. The former is realized as services that can be different code generators,
e.g. template-based or rule-based generators. The latter is part of a graphical DSL that allows to
execute the code generator services or other code generation related tasks.

By using code generation services, Genesys is agnostic to any code generator paradigm. In
addition, it provides a holistic solution because it also covers code generator evolution and main-
tenance, including test and verification utilities.

On the downside, Genesys is an entirely new tool that developers must learn from scratch.
Unlike CCG, which aims to enable reuse of existing tools that developers are familiar with,
Genesys provides a whole new tooling ecosystem that takes time to get used to.

Machine Learning-based approaches In the recent past, ML-based approaches to code gen-
eration have emerged. However, they have been used less for MDE and full-code generation.
Popular tools such as GitHub Copilot* or similar are more often used to generate small snippets
of code to assist developers. These tools take natural language descriptions of problems as input,
consider the current context within the source code, and propose code snippets to the developer
[NN22].

Approaches like GitHub Copilot are still relatively new and have yet to be used in large scale

4 https://github.com/features/copilot

9/13 Volume 82 (2022)

Towards Code-centric Code Generators E}

contexts. Nevertheless, they seem to be very promising for the future, also for MDE and full-
code generation.

On the contrary, they suffer from the same problems as many ML applications: lack of explain-
ability and trust, especially since deep learning techniques are mostly considered black boxes
[XUD'19]. Generating whole applications with ML approaches can be problematic because
developers may have to trust the resulting generate without any guarantees about its robustness
or correctness.

6 Future Work

This paper presents the main ideas behind the CCG approach. There are several things that
need to be done to realize this approach and make it a viable solution. In addition, there are
some challenges in the CCG design that may be resolved after further investigation. This section
covers the future work on the roadmap for future development and research around CCG.

Tool Reference Implementation Section 3 implies that the CCG approach requires tool sup-
port in order to be usable. There are three reasons for this:

1. ID calculations for AST nodes
2. Operation Mapping to these calculated IDs
3. Providing a generator for the resulting target code generator

Since the IDs require parsing the AST and then computing the IDs according to each node’s
path, this is only feasible if this is done in an automated manner by a supporting tool. The same
is true for mapping operations to these IDs. While it is not important for users of the tool to know
which ID they are assigning to which operation, it is still very important to be able to visualize
which subtree has been mapped to which operation. Ideally, this can be done by showing users
a graphical representation of the AST (e.g., in the form of a structured textual representation of
the source code) and labeling selected subtrees with color-coded indicators. Figure 3 shows two
example visualizations as they could be realized in a CCG tool. The left visualization is based
on an AST-tree representation, while the right visualization is based on the concrete syntax and
AST-mappings are made on top of this textual representation. Minimalist indicators seem to be
a way to visualize the mappings well with as little distraction as possible from the usual source
code representation.

Finally, it should be easy to generate the desired code generators. Although it is possible to
provide the generators in a different way (e.g. as an executable script that takes the mappings file
and the prototypical source code), it seems to be the best way to include the generation process
in the tool that is needed anyway.

To easily add support for as many languages as possible, it is best to use a widely adopted
parser. ANTLR [PQ95] seems to be a viable option for this. Future work should investigate
whether ANTLR is suitable, and how it can be used to provide a simple interface that allows
easy integration and deployment of new prototype languages.

ISoLA DS 2022 10/13

Eﬁ ECEASST

<html>
<head>
</head>
<body>

<div>
lorem
</div>
[[ipsum|
<div>
foo
</div>
</body>
</html>

Figure 3: Two example visualizations of operations mapped to HTML

Maintaining Mappings after Prototype Evolutions One of the key challenges that CCG tries
to solve is how to better evolve code generators in constantly evolving projects. Section 4 pro-
vides an example of how easy it is to make additional changes to the prototypical code that are
propagated to the resulting code generators. However, there are also cases where the evolution
of the prototypical code can lead to broken mappings and thus to potential loss of information.
Three types of edits can lead to these mapping losses:

1. Changes between the root and an operation-mapped node
2. Edits to the operation-mapped nodes themselves
3. Deleting operation-mapped nodes

Any editing may result in changes to the structure of the AST. Changes between the root and
anode of the AST will result in a new ID for that node. This can result in lost mappings because
the mapped IDs may no longer exist. A possible workaround for this problem is to introduce a
second ID, which is computed from the path of the (leftmost) leaf of the node’s subtree. This
additional ID can act as a repair mechanism so that the original root ID can be recomputed and
reassigned. Future work will investigate the feasibility of this approach. The effectiveness of this
fix-up depends on whether edits to both the root path and the leaf path occur regularly or not. If
not, the fix-up will be of great value. Otherwise, the effect of the extra ID may be marginal.

Edits to operation-mapped nodes themselves lead to the same problem, but additional IDs
cannot fix this. Alternatively, this problem may be solved by looking at the IDs of the parent and
the leftmost child of the node. The feasibility and impact of looking at surrounding nodes for
this problem also needs to be investigated in future work.

Finally, deletions can also result in lost references. Although this problem seems to be less
problematic since the code evolution omitted the mapped-to node, it could still be confusing
and clutter the mapping file if there are dead references. In addition, a deletion could easily be
mistaken for one of the above problems with changes that are reflected the node’s IDs. In both
cases, all potential IDs are missing, but surrounding IDs may still exist.

11/13 Volume 82 (2022)

Towards Code-centric Code Generators E}

Evaluation in real-world projects The true benefit of this new approach to code generation
can only be explored when it is applied to real-world projects. Ideally, exemplary projects would
be subject to frequent changes so that the main benefits of code evolution and maintenance can
be examined. There are also plans to integrate CCG code generation into Cinco [NLKS18] and
Cinco Cloud [BBK22], two workbenches for building graphical modeling IDEs. The latter
workbench and its resulting IDEs are entirely available on the web.

While real-world projects are certainly a part of future work, their use depends on first creating
the aforementioned reference tool implementation. In addition, it would be beneficial to first ad-
dress the aforementioned challenges of maintaining the operation mapping after prototype code
evolutions. Only with these prerequisites can the full potential of CCG be properly explored.

7 Conclusion

This paper introduces CCG, a novel approach to code generation. CCG places the prototype
created during code generator development as a central artifact of development, code evolution,
and maintenance. By adding an additional abstraction layer, developers can reference a prototype
and map typical code generator operations to nodes of the prototype’s AST. CCG tools can use
this abstraction layer to generate a code generator that is capable of generating target files as
expected.

This novel approach leads to improvements in code evolution and maintenance over typical
template-based generators. A major reason for this is that developers can now use arbitrary
tools (e.g., linters, code checkers, refactoring tools) that require parsable code directly on the
prototype. Changes made to the prototype are also reflected in the resulting code generator and
thus in the generated code. Manual changes to the code or testing are also easier to accomplish,
since they can be performed on the prototype as well.

However, the tool support required for CCG is also its main drawback. Instead of a universal
approach that is available for virtually any target language, CCG relies on tool support for each
target language individually.

While CCG is a very promising approach, its real benefits need to be further investigated. In
addition to addressing some of the challenges mentioned above, a reference tool as well as an
evaluation of the tool and the CCG approach need to be done in the near future.

Bibliography

[BBK™22] A. Bainczyk, D. Busch, M. Krumrey, D. S. Mitwalli, J. Schiirmann,
J. Tagoukeng Dongmo, B. Steffen. CINCO cloud: a holistic approach for web-based
language-driven engineering. In Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Software Engineering: 11th International Symposium, ISoLA
2022, Rhodes, Greece, October 22-30, 2022, Proceedings, Part II. Pp. 407-425.
2022.

[Bet16] L. Bettini. Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd, 2016.

ISoLA DS 2022 12/13

B

ECEASST

[Fow10]

[Jor13]

[KTO8]

[NLKS18]

[NN22]

[PQY5]

[Sel03]

[SLS18]

[Vo109]

[XUD*19]

M. Fowler. Domain-specific languages. Pearson Education, 2010.

S. Jorges. Construction and evolution of code generators: A model-driven and
service-oriented approach. Volume 7747. Springer, 2013.

S. Kelly, J.-P. Tolvanen. Domain-specific modeling: enabling full code generation.
John Wiley & Sons, 2008.

S. Naujokat, M. Lybecait, D. Kopetzki, B. Steffen. CINCO: a simplicity-driven ap-
proach to full generation of domain-specific graphical modeling tools. International
Journal on Software Tools for Technology Transfer 20:327-354, 2018.

N. Nguyen, S. Nadi. An empirical evaluation of GitHub copilot’s code suggestions.
In Proceedings of the 19th International Conference on Mining Software Reposito-
ries. Pp. 1-5. 2022.

T. J. Parr, R. W. Quong. ANTLR: A predicated-LL (k) parser generator. Software:
Practice and Experience 25(7):789-810, 1995.

B. Selic. The pragmatics of model-driven development. IEEE software 20(5):19-25,
2003.

E. Syriani, L. Luhunu, H. Sahraoui. Systematic mapping study of template-based
code generation. Computer Languages, Systems & Structures 52:43—62, 2018.

M. Vélter. Best practices for DSLs and model-driven development. Journal of Ob-
Jject Technology 8(6):79-102, 2009.

F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, J. Zhu. Explainable Al: A brief survey
on history, research areas, approaches and challenges. In Natural Language Pro-
cessing and Chinese Computing: 8th CCF International Conference, NLPCC 2019,
Dunhuang, China, October 9-14, 2019, Proceedings, Part I 8. Pp. 563-574. 2019.

13/13

Volume 82 (2022)

	Introduction
	Common Code Generator Approaches
	Code-centric Generators
	Example & Comparison
	Related Work
	Future Work
	Conclusion

