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Abstract: DySCAS is a dynamically self-configuring middleware for automotive
control systems. The addition of autonomic, context-aware dynamic configuration
to automotive control systems brings a potential for a wide range of benefits in terms
of robustness, flexibility, upgrading etc. However, the automotive systems represent
a particularly challenging domain for the deployment of autonomics concepts, hav-
ing a combination of real-time performance constraints, severe resource limitations,
safety-critical aspects and cost pressures. For these reasons current systems are stat-
ically configured. This paper describes the dynamic run-time configuration aspects
of DySCAS and focuses on the extent to which context-aware adaptation has been
achieved in DySCAS, and the ways in which the various design and implementation
challenges are met.

Keywords: real-time embedded systems, dynamic configuration, context-aware be-
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1 Introduction

Distributed embedded systems are traditionally configured at deployment time, i.e. tasks are
statically allocated to nodes and settings are fixed for the product’s entire life time. It is usually
not easy to upgrade the software or add new functions.

A key characteristic of computing systems in the automotive domain is precisely the difficulty
in making efficient changes post-deployment during a long vehicle lifecycle for the purpose of
software maintenance, customization and personalization, as well as incorporation of technol-
ogy innovations. For example, it is known that a vehicle as a whole has in general a lifecycle
three to ten times longer than its less tightly connected infotainment devices. This gap creates a
tension and desire to upgrade both hardware and software of the infotainment devices and have
them seamlessly integrated into the vehicle. Under current practice this can only be achieved by
directly servicing each vehicle by suitably qualified personnel with specific equipment.

It is expected that future vehicles will offer the following abilities [ALE+06] : performing cost
efficient and reliable field maintenance and upgrades of software; integrating external devices,
communication with nearby vehicles and composition of their provided services; and allowing
post-deployment time optimization of software configuration and resource deployment according
to current environment conditions and internal status.

Vehicular control systems are increasingly complex and this complexity impacts on the already
long design and development cycles. The automotive industry needs the ability to defer some de-
sign decisions so that time-to-market is reduced without compromising the level of functionality
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achieved. Upgrades should be supported transparently throughout the lifetime of the vehicle. Ve-
hicle owners’ expectations of technology are also increasing and they demand the ability to make
customization choices, and to change those choices over the vehicle’s lifetime. Flexible vehicle
upgrades are also indirectly demanded because vehicular legislation concerning aspects such as
safety, emissions, noise etc. are constantly updated and applied differently at national levels;
currently such legislation only affects new vehicles as it can not be retrospectively applied.

DySCAS (Dynamically Self-Configuring Automotive Systems) is a middleware technology
that facilitates context-aware dynamic reconfiguration of automotive control systems. The de-
ployment of self-management into vehicular systems has the potential to improve robustness e.g.
through dynamic fault handling; to improve efficiency, e.g. through dynamic reconfiguration to
reduce power consumption; and to make systems flexibly upgradeable and customisable.

This paper focuses on the goals of DySCAS, the need for context-awareness in a system such
as DySCAS, the mechanisms by which run-time context-aware dynamic configuration has been
achieved, and provides brief details of two of the implemented reference modules.

2 Related work

Context-awareness (CA) enables systems to behave in accordance to their environment and cir-
cumstances. This is of high topical importance in a wide variety of application domains; as such
CA is a core theme of a number of recent and current projects. MUSIC [MUS] targets the de-
velopment of an open platform technology supporting self-adaptive / CA mobile applications.
MUSIC includes a methodology, tools and middleware. MIDAS [MID] is a middleware which
is context-aware in the sense that it automatically adapts to changes in network topology. This
is not only to compensate for problems (such as the failure of particular links) but also to ex-
ploit opportunities offered (such as when high bandwidth connections to central machines are
available). inContext [inC] is investigating new techniques and algorithms for pro-active service
aggregation, CA service adaptation and service provisioning, to enable dynamic collaboration.
CONNECT [CONa] combines research in several areas including CA, to implement a privacy
management platform for pervasive mobile services. CONSEQUENCE [CONb] is concerned
with dynamic management policies supported by an architecture that is CA as well as secure and
resilient. A Context Awareness Manager is the core component of the LATIS Pervasive Frame-
work (LAPERF) [TN06]. The objective is to provide a framework, and automating tools to sup-
port developers of pervasive computing applications. The DySCAS project is differentiated from
these other projects fundamentally in the sense that the CA logic itself, as well as the particular
selection of context information used in dynamic decision making, is run-time changeable. This
yields a highly flexible system such that the functionalities of its applications are not restrained
by limited design time vision. [CY08] presents a CA intelligent system architecture for perva-
sive mobile computing applications. A ’context server’ functions as a repository for application-
specific context information. The concept of a context fingerprint (a characterisation of the
context that a mobile device determines from its sensors) is introduced in [Joh07]. A frame-
work is also provided to allow these ’fingerprints’ to be associated with events and actions that
are fired on transition between contexts. A Service-Oriented CA Middleware (SOCAM) archi-
tecture is presented in [GPZ05]. The architecture provides comprehensive support for building
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context-aware services. A formal context model based on ontology is also proposed, to address
CA-related issues including context reasoning, context classification and dependency. Similarly,
[SWV07] describes a service-oriented middleware which provides a scripting-like method for
CA application development; allowing the subscription of rules containing context-based events
and conditions and a notification to be sent when the specified context holds. Vehicular control
systems are advancing in several directions in response to the requirements of increasingly rich
functionality and high configuration flexibility. A component based approach for managing the
increasing complexity in modern vehicular systems is proposed in [BCSV08]. Components are
used from early design through development and deployment, to support separation of concerns
at different levels of granularity. An OWL-based context-model for abstract scene representa-
tion of driving scenarios to support driving assistance systems is described in [FRLK08]. The
work presented in [FSSC08] is concerned with time-bounded adaptation for automotive sys-
tem software. Requirements for dynamic software adaptation are identified and a taxonomy of
various dimensions of dynamic adaptation in emerging automotive system software is defined.
Embedded systems present a challenging arena for the development of adaptive, context-aware
systems, primarily because of the special concerns of limited resources and the inflexibility to
change (i.e. the difficulty of upgrading code). A resource-oriented embedded system design
framework is presented in [KSC08]. Embedded system components are incrementally developed
in both a resource-independent model (which is functionality oriented) and a resource-oriented
model. The two models are constrained so as to be consistent with each other and in compli-
ance with hardware behaviour. A design framework for real-time embedded systems is discussed
in [LSK+08]. The framework takes into account the performance trade-off between code size,
execution time, and energy consumption characteristics. The proposed technique generates de-
sign parameters such that system cost is minimized while the resource constraints are satisfied.
[But06] Discusses some major research needs, to make the next generation embedded systems
more predictable and adaptive to environmental changes. Problems with current approaches are
identified, along with potential solutions from research in operating systems and scheduling.

3 DySCAS, and its goals

The introduction of context-aware dynamic reconfiguration to the automotive domain requires
careful consideration of the technical challenges. These are identified as: Application charac-
teristics – many automotive applications have QoS requirements that imply real-time schedul-
ing and worst-case performance guarantees, including communication latency. Long product
lifetimes, long design lifecycle, and high-valued products. Flexibility is needed to support
functions and behaviours not perceived at design time – this is necessary to future-proof prod-
ucts by enabling upgrades at various levels (hardware, middleware components and application
components, as well as strategic control logic within these components). This reduces the pres-
sure of taking everything into account at design-time. High robustness – applications should
continue to function despite localised failures. Systems can have safety-critical aspects and thus
must be highly dependable. Efficient resource utilisation – in order that several applications
can co-exist without QoS conflicts. Support for a variety of platforms and resource configu-
rations – this is because the industry has not standardised in these aspects, because of the diverse
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set of applications possible, and because future technologies will inevitably be blended in with
current solutions. Support for distributed processing – the typical automotive control systems
comprise a number of heterogeneous electronic control units spread throughout the vehicle.

The key goals and requirements of DySCAS have been derived from the technical challenges
above. In addition to the directly mapped requirements (real-time performance, scalabil-
ity, platform independence, extensibility and functional upgrade), these also include: Self-
management and automatic run-time configuration - because the systems are highly dynamic
(so cannot have fixed configuration), and are too complex for users to configure manually in a
timely way. Context-awareness - dynamic adaptation and configuration must take account of
current operating conditions and system environment. Validatable behaviour - despite dynamic
configuration and adaptation, the deployed systems must be predictable and must be trusted to
remain within allowable bounds of behaviour and to remain stable despite perturbations.

The following scenario puts several of these requirements into perspective. Consider that a
new use case arises which did not exist when the vehicle was built. A handheld navigation device
becomes available inside the vehicle - we want to attach the device to the vehicle, and integrate
into the vehicle the specific human machine interface of the device. Its functions will become
integrated into the vehicle’s infotainment system e.g. via wireless Bluetooth communication.
Navigation directions should be given out via the sound system of the vehicle while the current
entertainment source is muted. The integration and removal of the handheld navigation device
must be seamless to the driver and passengers. The DySCAS use-cases are structured into generic
classes and specific cases and are discussed in detail in [ARJ+07].

A further motivator for the transition from the traditional static configuration to dynamic con-
figuration is that this provides new opportunities for quality control. The increased use of em-
bedded systems in vehicles implies a growth of complexity both in the products as well as in
the development. In many advanced applications (e.g., relating to advanced human-machine in-
terface and active safety), the data, functionalities and behaviours of traditionally independent
software and hardware components are being integrated, further characterized by constraints on
timeliness, performance, dependability, resource utilization, or technology compatibility. In sys-
tem development, such product complexity is augmented by the involvement of multiple stake-
holders, heterogeneous disciplines and technologies, as well as process and lifecycle concerns.
Clearly, such challenges call for new technologies, tools, and methodologies, as well as new
technologies for run-time monitoring, analysis, enforcement of qualities and error handling.

Predictable configuration management is a key problem today, even for statically configurable
systems. New approaches are required that can handle problems with complex configurations
to ensure functional and temporal correctness. The problems will be increasing with ever more
software based functions and with the need to handle additional dynamics.

The DySCAS approach to dynamic architecture has considered the needs of advanced con-
figuration management support in the following dimensions: Product life-cycle management:
The types of product adaptations that could take place here include software upgrades, module
replacements (hardware/software) and additions of new functions by adding new software or
entire devices. Optimization of performance and resource utilization: Many embedded sys-
tems, including a large portion of automotive systems, are exposed to varying number of events
and applications running at the same time, and with varying resource requirements over time by
the applications. Moreover, the applications are in most cases of soft real-time nature, implying
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that the timing constraints are subjective (determined by human senses) and not mission critical.
All these aspects imply that static, worst-case designs cannot provide optimal performance and
resource utilization, and call for a more adaptive configuration according to actual environmen-
tal conditions and system internal status. Supervisory control for runtime system verification,
validation, and error-handling: The intended support of dynamic configuration offers a new
opportunity for handling the complexity of embedded systems. It promises for the future a trade-
off between the costly development-time and testing effort against advanced run-time support
through monitoring, analysis, and enforcement of qualities.

4 Context Awareness in DySCAS

Within a DySCAS system, context-awareness is one of the most fundamental necessities to drive
configuration and adaptation that is appropriate for current conditions. A number of factors af-
fect the characteristics of ’context’ in such a system. A wide variety in the nature of context
information arises because there are many different sources of the information, different levels
of precision, up-to-dateness, and data types. Examples of context information in an automo-
tive environment include: user preferences for various service configurations; levels of resource
available from instrumentation on processing platforms; system and environment conditions pro-
vided by sensors (raw and aggregated values); details of connected devices; and details of opera-
tional state, faults detected etc. Over time, in a dynamic upgradable system, the types of context
available may change because for example a new sensor might be added, or instrumentation may
be upgraded to provide better precision. Additionally the context requirements of a particular
self-managing component may change over time. For example policy-logic may be upgraded to
a more-sophisticated version which needs a wider selection of context, or increased precision, to
make more-optimal configuration decisions.

These factors imply certain requirements on the context management approach used:

• Accurate - context must be sufficiently precise and fresh to support the configuration de-
cisions based on it. These parameters are specific to each type of context information.

• Low latency - context information must be made available to the decision points where is
it used without increasing the latency of the configuration decisions.

• Scalable - the context management should scale-up as necessary when new context providers
and consumers are added.

• Distributed - to support scalability and low-latency the context management should be dis-
tributed with a hierarchical mapping between local and global-level context management.

• Dynamic - the mapping between context providers and consumers must be dynamic to
enable incremental upgrades of strategic decision logic within components which in turn
can lead to different context information requirements of these components.

The DySCAS component model for run-time configuration is based on embedded ’Decision
Points’ (DPs) in software components, into which policies are loaded at run time. Thus the
configuration logic can be distributed throughout the middleware and application components
wherever deferred logic or run-time context-sensitive configuration is required.
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Figure 1: The dynamic context management approach and the context-related interactions be-
tween dynamic wrappers, decision points and policies.

The logic modules that are loaded into DPs take the form of policies written using a DySCAS-
specific variant of the AGILE [Ant06] policy grammar. This grammar has been specifically
developed to enable flexible and powerful expression of self-adaptive, context-aware behaviour
whilst keeping the language complexity low.

The grammar explicitly separates (by type) externally provided context variables from inter-
nal working variables. This enables automatic determination of the context information require-
ments of a particular policy during run-time loading and parsing of the policy script.

Decision Points encapsulate a run-time supervisor (the ’Dynamic Wrapper’ - DW) which pro-
vides a sand-box environment in which a policy operates. In addition to detecting and han-
dling any problems arising from policy evaluation, the DW automatically identifies the context-
requirements of a specific policy during the policy-load procedure (Figure 1a). To meet the con-
text provision requirements as discussed above, a publish-subscribe context management service
has been incorporated into the DySCAS middleware [DySa] (as part of the Resource Deploy-
ment Management Service component). To facilitate that the mapping between component and
context information is dynamic, the DW automatically makes subscription requests to the context
management system for each required context item (Figure 1b). The context management ap-
proach decouples, and avoids redundant communication between, dependant components. This
can be achieved by performing context updates to consumers on a state-change, ’push’ basis
(Figure 1c) - note that this aspect is an implementation decision and is not mandated by the
DySCAS specification. The context items are cached locally within the DW (i.e. process-local
to the policy evaluation logic) to ensure low-latency access during policy evaluation (Figure 1d).

An automotive embedded system typically comprises applications and application platforms.
Consisting of logical functions and software programs implementing such functions, the applica-
tions allow a vehicle system to have advanced functionality in the areas of information handling
and human machine interactions, active and passive safety, control of chassis and power-train,
etc. The application platform provides the implementation and runtime execution support for
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Figure 2: The control scheme of DySCAS, showing the top-level function blocks and their inter-
actions (arrows).

the applications, typically consisting of basic software such as operating systems and device
drivers, and hardware resources such as CPU, memory, and infrastructure like CAN, LIN and
MOST. The actual content and features of the application platforms may differ among different
application areas and vehicle systems.

An embedded system is self-configurable if it is able to autonomously adapt to changing en-
vironmental conditions or internal status by altering its structures, behaviours, and data to meet
its functionality and quality requirements. From a systems perspective, such a feature relies on
the following key characteristics:

A) The system’s ability to monitor and define its internal status and external conditions (e.g.,
application modes, CPU and memory utilization, and attachment of external devices);

B) Its built-in knowledge about the configuration variability and related policies/rules for decid-
ing and planning changes; and

C) Its ability to conduct dynamic configuration changes without violating the constraints relat-
ing to the overall system functionality, performance, and dependability.

The DySCAS approach to self-configurable automotive embedded systems exploits the fun-
damental principles of automatic control for the design of middleware interfaces and control
functions, while adopting well-known architectural styles and reference models for the structur-
ing of middleware architecture [DySa]. A schematic overview of the targeted self-configurable
automotive embedded system is illustrated in Figure 2.

As a fundamental feature in achieving the self-configurability, inroads towards self-awareness
in DySCAS means that a vehicle embedded system or component is allowed to be reflective,
not only about the execution status and conditions of its environmental entities and resources
(referred to as execution context awareness) but also about the related architectural design con-
straints (referred to as architecture context awareness). The term architecture here refers to the
overall design of an embedded system that specifies the system’s environment, application func-
tions and programs, as well as the application platforms. Particular concerns include the design
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and configuration of data, interfaces, functions and behaviours, relationships (e.g., composition
and communication, and logical and implementation dependencies), and related conformance
and quality constraints (e.g., restrictions of hardware binding and robustness).

These two aspects of self-awareness correspond to the above mentioned key characteristics A
and B respectively. In DySCAS, they constitute the basis for applying the feedback and feedfor-
ward control principles to achieve self-configuration through middleware as in the following:

• Awareness of execution context. This type of context-awareness implies measuring the per-
formance of applications and platform resources during run-time for the target system or
component under control. The measurements are shown in Figure 2 with the connections
from the application programs and application platforms to the DySCAS middleware. This
includes for example, current application modes, QoS levels, utilization of memory and
network bandwidth, length of task dispatch queues and ratio of missed deadlines. The
instrumentation is necessary for being able to detect any deviations from intended system
states and then react to the measured conditions as in feedback-control either based on
predefined configuration policies/rules or based on the compensation derived according to
the built-in architecture knowledge.

• Awareness of architecture context. This implies the provision of built-in knowledge about
the system configuration and variability. As shown in Figure 2, such knowledge is em-
bedded through the middleware in terms of meta-data for system or components that are
subjected to the dynamic configuration. For software components, the meta-data for exam-
ple specify their logical and resource-specific interdependencies, QoS contracts, platform
compatibility, as well as their composability in regards to the overall system functional-
ity, end-to-end performance and dependability. Given such knowledge, it is possible to
deliberatively compute how a system should be optimized through restructuring and/or
behaviour adaptation to compensate for measured deviations as in feedback-control. A
further possibility with such knowledge is to enforce predictability in the presence of un-
certainty during online optimization as in feedforward control.

One fundamental concept is variability, which refers to the specification of possible variations
that a particular system configuration can have. Traditionally, variability is used for the feature
configuration of product lines and dealt with off-line [CCG+07]. In DySCAS, the concept is ex-
tended to many more configuration items, levels of abstractions, and product lifecycle concerns.
It is assumed that all meta-information and configuration management policies/rules that provide
the middleware-based online configuration management are derived from corresponding off-line
function and architecture design, verification and validation activities. The issues of particular
concern include impacts of changes on the overall system functionality, end-to-end performance,
and dependability.

DySCAS provides an information model that stipulates a set of predefined data types for for-
malizing various architectural and executional concerns in dynamic configuration management.
See Figure 3 for an overview of the content and [DySa]for the specification. For a target system,
the distinct parts that can be configured separately are referred to as configuration items, which
can related to the logical design or the design of software and hardware implementations.

The System Configuration Item Package provides support for capturing various architectural
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DySCAS provides an information model that stipulates a set of predefined data types for 
formalizing various architectural and executional concerns in dynamic configuration 
management. The information model is specified in <part II>. See Error! Reference source 
not found. for an overview of the content. For a target system, the distinct parts that can be 
configured separately are referred to as configuration items, which can related to the 
logical design or the design of software and hardware implementations.   

The top-level structure of DySCAS Information Model. 

In the information model, The System Configuration Item package provides support for 
capturing various architectural entities and relations, as well as the constraints in terms of 
behaviour and quality attributes. For capturing the allowed variability of system entities 
and dependencies, the definition of configuration item inherits the data types for variability 
description. This package also imports the data types for system condition and status for 
detailed specification of system behaviours. The System Configuration Variability Package
provides the basic data types for specifying the variability of configuration items as well as 
the variability of item attributes. The System Condition&Status Description package 
imports the data types of system configuration and augments them with related dynamic 
condition and status information. The System Configuration Description package provides 
information about the configuration of a system including the allowed variability and the 
currently applied effective choices (i.e., current variability binding). This description uses 
the basic data types of system configuration item and the variability concepts. The 
Configuration Change Description package extends the imported definitions of system 
configuration and system condition&status with additional information about the changes 
to be performed and the related constraints on performing such changes. The Configuration
Work Description package provides support for specifying the tasks of dynamic 

funcParameter_configurationChangeDescription
funcParameter_configurationChangeConstraint

Configuration Change Description

funcParameter_configurationWorkHandlPreferenceType
funcParameter_configurationWorkHandlStatusType
funcParameter_configurationWorkDescription

Configuration Work Description

funcParameter_systemConfigurationDescription
funcParameter_variationConfiguration
funcParameter_variabilityChoice

System Configuration Description
funcParameter_dynamicStatus&Condition
funcParameter_cnfgCondition&Status
funcParameter_attCondition&Status

System Condition&Status Description

funcParameter_systemConfigurationItem

funcParameter_configurationItemType
item Behavior&Quality Attribute

system Entity Relation
system Entity

item Group

System Configuration Item
funcParameter_configurationVariability

funcParameter_itemAttributeVariability
funcParameter_itemVariability

System Configuration Variability

<<import>>

<<import>>

<<import>>

<<import>><<import>>

<<import>>

<<import>>

<<merge>>

Figure 3: The top-level structure of DySCAS Information Model.

entities and relations, as well as the constraints in terms of behaviour and quality attributes.
For capturing the allowed variability of system entities and dependencies, the definition of con-
figuration item inherits the data types for variability description. This package also imports
the data types for system condition and status for detailed specification of system behaviours.
Figure 4 provides a top-level view of the data types of configuration item for capturing the
meta-information in regards to structural, behavioural, and quality characteristics of a system
architecture, where the attribute description type provides support for the behaviour and qual-
ity characteristics, such as constraints on precedence, timing and performance, and hardware
resource utilization.

5 Implementation

DySCAS started by defining some advanced concepts for self-management and context aware-
ness in dynamic, distributed systems with very challenging application and domain constraints
and has succeeded in concretising these concepts in the form of reference implementations and
demonstrators that have been built, collectively covering most of the DySCAS functionality.
Two examples are briefly presented here: DyLite (short for DySCAS Lite/QoS) and GADGET
are two of several partial reference modules [DySb, DySd].
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configuration management while importing the configuration change description for 
defining the expected changes.

See Figure for a top-level view of the data types of configuration item for capturing the 
meta-information in regards to the structural, behavioural, and quality characteristics of a 
system architecture, where the attribute description type provides support for the behaviour 
and quality characteristics, such as constraints on precedence, timing and performance, and 
hardware resource utilization. 

An overview of system configuration item definition. 

In Error! Reference source not found., two examples of applying the information 
model for meta-data of configuration management are given using UML instance 
diagram where the blocks are the data structures and the lines are the cross type links. 
The first example captures the internal parts of a vehicle HMI backlight control 
system as well as their analytical dependency (instead of a detailed data connectivity 
description). The second example captures a two alternative task scheduling 
schemes, i.e., node_1_task_schedule_1 and node_1_task_schedule_2, and two 
applicable resolutions (i.e., choice_1 and choice_2). As the binding given by 
effective_variation_choice attribute has the value choice_1, the 
node_1_task_schedule_2 with an EDF scheme is currently applied.
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<<dataType>>
funcParameter_configurationItemGroup

<<dataType>>
funcParameter_implmentationSolutionGrouping

<<dataType>>
funcParameter_implementationDependency
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Figure 4: A top-level view of the DySCAS system configuration item definition.

0-1 1 2 3

Resource Usage:

1:
2:
3:

ΔCPU Δ Mem. ΔBW

2,3% 300 B 0,3%
3,8% 420 B 0,0%
0,4% 112 B 0,2%

DL

0,2 s
0,4 s
0,1 s

ΔBft

3
10
1

QoS 
mode

inactive init.

Figure 5: The DyLite task model, an example. State -1 is an inactive (nondeployed) state and
state 0 is an initialization state. States 1–3 (and so on) are different QoS modes, annotated with
the application’s metadata: the resource usage of the processor (∆CPU), memory (∆Mem) and
bandwidth (∆BW), deadlines/periods (DL) and benefits (∆Bft).

5.1 DyLite reference implementation

DyLite [PGF+09] focuses mainly on reconfiguration and quality of service (QoS) aspects and
as such is not a complete implementation of DySCAS. The main intent was not to provide an
optimized implementation, but a proof-of-concept to show that a system with aspects of self-
awareness doesn’t need to be very complex. To allow very compact implementation, DPs were
only implemented using traditional code. Middleware services not necessary for the studied
features were simplified. Due to technical constraints of the chosen platform, applications were
statically deployed. Finally; only a fixed network topology was considered.

The reconfiguration abilities of DyLite have been used to demonstrate scenarios such as hard
QoS guarantees, QoS mode optimization, load balancing between nodes and resilience to hard-
ware failure (when a node fails, the applications that were running on it are reallocated to other
nodes). All of these are achieved simply by triggering reconfiguration at system changes, such
as software or hardware being added or removed from the system.

For the reconfiguration and quality of service decisions, knowledge of the QoS behaviour of
application tasks (component), captured in delivery notes, is needed. In DyLite, these specify
applications’ maximum resource needs in each of their QoS modes. A higher numbered QoS
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Target Sensed Status Related decision activities/algorithms Related actuation activities
Applications A QoS mode request

from the application
Compare with the allowed maximum QoS mode Switch application to the highest mode out of the re-

quested and allowed maximum one.
Application
Platform:
network

Token count in bucket Leaky bucket algorithm: Remove tokens when sending,
periodically replenish buckets.

If tokens are not available then trying to send: block call-
ing application task until replenishment.

Changes in applica-
tion set or node con-
nectivity

Find a new configuration using the self-configuration al-
gorithm. It is ensured to meet the Liu-Layland criterion
for the communication.

Distribution of new maximum QoS modes for applica-
tions. The settings of leaky buckets are updated at QoS
mode change.

Application
Platform: CPU
and memory

Detected Deadline
miss

React to offending tasks E.g. by changing their modes, skipping jobs, killing it,
etc.

Changes in applica-
tion set or node con-
nectivity

Find a new configuration using the self-configuration al-
gorithm. It is ensured to meet the Liu-Layland criterion
for all CPUs and not to use more than available memory.

Distribution of new maximum QoS modes for applica-
tions. The deadline monitoring is updated at application
QoS mode change.

Table 1: Sensing and actuation in DyLite. Compare with Figure 2.

Figure 6: Overview of the reconfiguration algorithm used in DyLite.

mode is further always assumed to provide better QoS to the user and use more resources.
The delivery notes are stored inside the middleware, as specified in the DySCAS informa-

tion model and reference architecture [DySa]. Together with each QoS mode, a measure of
merit/benefit of the application’s functionality in that mode is given. An illustration of an exam-
ple application with 3 QoS modes, and its delivery note, is given in Figure 5.

Applications are assumed only to have dependencies on each others’ existence – one appli-
cation can’t require another application to run in a specific mode, and hence QoS is assumed
not to propagate along communicating applications. Each application periodically performs any
applicable QoS change itself as instructed by the middleware. To improve performance, this is
done by having an intermediate variable containing the maximum allowable QoS mode, which
is updated when a new configuration has been found by the reconfiguration algorithm.

With such built-in knowledge of application QoS behaviour, the middleware monitors current
application and platform status and thereby derives appropriate adaptation activities, e.g. chang-
ing an application’s QoS mode. A misbehaving application, e.g. one which uses more resources
than specified, is acted upon by the middeware – the control strategy is given in Table 1.

For CPU, deadline overrun is detected and handled. For network usage, the leaky bucket
algorithm is used to shape the traffic and hence control the traffic flow. To provide schedulability
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(a) Implemented components to demonstrate and validate
the policy-based context-aware dynamic configuration aspects,
showing the interactions with the Repository Manager during
policy load, and the interactions with the Context Manager.
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(b) Outline of the deployment of the climate
control application onto the GADGET plat-
form.

Figure 7: Policies in GADGET.

guarantees, a special self-configuration algorithm has been developed [FCT08] illustrated in
Figure 6. Upon configuration changes, this algorithm is triggered to find a new configuration
which is then distributed. Assuming correctly set scheduling parameters such as priorities, a
configuration (task allocation and maximum QoS modes) with schedulability guarantees for all
deployed applications can be found.

5.2 Policy-based Dynamic Adaptation in DySCAS

A reference module (internally named GADGET) was developed to demonstrate and validate
the policy-related concepts of DySCAS. Selected parts of the DySCAS specification were im-
plemented to enable the policy-based dynamic self-management to operate in real software com-
ponents running on automotive-typical hardware platforms (see Figure 7a). Core themes targeted
here were run-time configuration and context-aware adaptation, as illustrated in overview in Fig-
ure 1. The main mechanisms of interest are the DP which is embedded into components at design
time, and is a place holder for a policy subsequently loaded during run time, and the DW which
provides run-time supervision of DPs (this guarantees that DP evaluation always returns a ’valid’
output despite possible internal errors which are detected and handled silently by either the pol-
icy evaluation engine itself, or the DW). Where the policy cannot be evaluated (for example no
policy is loaded into the DP, or the required context information is not available) the DW ensures
that a design-time decided ’default’ value is returned, or in some cases a roll-back to a previously
working policy may be performed, depending on circumstances. In effect, the DW ensures that
the added dynamic behaviour aspects collapse down to predictable, static outcomes when prob-
lems occur, ensuring that the introduction of dynamic adaptive behaviour is not accompanied by
complex new failure modes. These aspects are discussed in detail in [AWC+08].

Key components of the reference module include: The AGILE-Lite library [PA07] which
is responsible for policy evaluation and dynamic decision making. This derivative of the earlier
AGILE is optimised for processing speed and deployment on embedded platforms (e.g. it has
a small memory footprint). Communication Service (CS) responsible for handling communi-
cation between services based on socket and message queues mechanisms. Context Manager
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Figure 8: Diverse climate control application policies, illustrating the flexibility of the approach

(CM) responsible for context information handling, including operations of context provision,
subscription. Repository Manager (RM) responsible for handling policy repository, including
policy update, policy versioning, and policy rollback. Component Development Kit (CDK),
which is a framework substantially simplifying development of components containing dynam-
ically configurable Decision Points (DP). Several dynamically configuring applications, with
accompanying policy logic have been developed to run on GADGET. One of these was a cabin
climate control application (outlined in Figure 7b) in which a number of different policies could
be loaded into a DP - differently configuring its behaviour - each is accompanied by its unique
set of context information requirements, which relates to the sophistication of the policy itself (as
illustrated in Figure 8). This ability to dynamically change both the self-management logic and
the selection of context information it uses enables the deployment of a generic software compo-
nent across a range of vehicles (e.g. to account for different equipment levels, sensors / actuators
fitted); the component is subsequently customised either at the level of individual models, or at
the level of individual vehicles (e.g. to account for different user preferences).

6 Conclusion

The DySCAS project has pushed forward the boundaries in several domains. In addition to
producing a detailed specification for autonomic self-management in the very demanding auto-
motive arena, it has also explored a number of new aspects of autonomics and control systems
concepts and has concretised some earlier abstract aspects. It has led to a new level of function-
ality in policy-based computing, pushed forward middleware design concepts and demonstrated
how dynamic, scalable and low-latency distributed context provision and context awareness can
be achieved.

The feasibility of the DySCAS approach has been demonstrated in several key ways. The
DyLite implementation of DySCAS, together with the demonstration activities within the project
[DySc], have shown that implementing a middleware supporting self-configurability is indeed
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feasible, and the run-time overheads are acceptably small. We have shown that relatively simple
models of available resources and deployed applications are sufficient to make the system able
to monitor its own behaviour (key characteristic A in section 4), use its in-built knowledge about
both execution context, e.g. current QoS mode for applications, and architecture context, e.g.
the possible configuration variability, to infer a possible configuration (key characteristic B), and
conduct configurational changes, e.g. setting an upper limit on the QoS mode that an application
may run at (key characteristic C).

DySCAS represents a first step towards self-managing automotive systems. It is difficult to
predict how long it will take for advanced concepts to reach production vehicles. However, we
have set a foundation, we have investigated the challenges, identified the tradeoffs, the costs and
risks. We have identified realistic use cases and demonstrated how these can be realised.
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