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Abstract: In this paper we present a new approach to deal with attdbgtaphs

and attributed graph transformation. This approach isaseworking with what

we call symbolic graphs, which are graphs labelled withalads together with a
formula that constrains the possible values that we maygmgsi these variables.
In particular, in this paper we will compare in detail thissnapproach with the
standard approach to attributed graph transformation.
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1 Introduction

The study of graph grammars and graph transformation dtdfig/ears ago. However, the first
formal approach to deal with attributed graphs is much mecemt [L2], even if this kind of
graphs are needed in many applications of the field. Actuléydevelopment of the fundamen-
tal theory of graph transformation for the case of attridugeaphs is quite recent]. The reason
for this late development is probably that, even if the bifitted case may seem to be a straight-
forward generalization of the standard case, it presemte stifficulties which have hampered
the development of this fundamental theory. One of thededlifies lies on the complication of
putting together two theoretical frameworks, algebraiec#fication and graph transformation,
even if both are algebraic and categorical frameworks. ¢t ta avoid this problem, at least to
some extent, in12] graphs are coded as algebras with the aim of having a unietting. The
problem is that, in general, algebra transformation doeé€njoy the right properties to ensure
that the basic theory of graph transformation will hold.

The approach studied irl?], based on the approach presentedlifi [is, in a sense, the
opposite. In this case, the data algebra is embedded in dpd.gMore, precisely, an attributed
graph is seen as a pair formed by an algebra, to define thesvalube attributes of the graph,
and a graph that includes all the values of the algebra asadxind of) nodes. This approach
still has some difficulties caused by the fact that, evendfdhaphs of interest are defined over
the same data algebra, we have to consider categoriesimglgcaphs over different algebras.
The reason is that, most often, the algebras in the graphsrowgin the transformation rules are

* This work has been partially supported by the CICYT projeef.(TIN2007-66523) and by the AGAUR grant to
the research group ALBCOM (ref. 00516).
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different from the algebras in the graphs to which we appéséhrules. In7] the algebra used
in rules is the freely generated term algebra over a giveofsatriables, i.e. attributes are terms
with variables. However, one could use different algeboasdéfining transformation rules. In
particular, for the formalization of attribute conditigrthe term algebra over a set of variables
is not sufficient. In this sense, in this paper we introducpexi$ic way to do this by taking the
initial algebra associated to a given specification.

In[19], Plump and Steinert present an approach that avoids thelegity of having to deal,
in a single concept, with graphs and algebras. This apprisaessentially based on two ideas.
On the one hand, attributed graphs are seen as labelledsgrapbre the labels are defined as
elements of an algebra. On the other hand, graph transfiomsahvolving computations on the
labels are defined by ruchemaswhich are similar to graph transformation rules, but define
in terms of graphs labelled by terms with variables. Themgpply a rule schema to a given
graph we must first instantiate the schema assigning datev#b the variables in the schema.
The result of the instantiation is a rule where the termsliafp¢he graphs have been replaced by
the values of these terms. In our opinion, the approach hasnain drawbacks. The first one is
the fact that rule schemas are not first class citizens, isg¢hee that they need to be instantiated
to define the rules. This causes that one may need to explieitbrmulate in terms of that
framework most constructions and results associated phgransformation. This would be the
case, for instance, if we would want to define in that framéwmntions like graph constraints,
typing or borrowed contexts. On the other hand, in that agrpa limitation is imposed on the
number of labels that each node or edge can have. In partiqulhat paper, at most one label
is allowed, though it would not be difficult to fix a differeniriitation.

The main aim of this paper is to present a new approach to ddaawributed graph transfor-
mation, which we believe is conceptually simple but more @dw than previous approaches, as
we show. The approach is partially inspired on how the clguesd and the data part are concep-
tually separated in Constraint Logic Programmidd,[14]. In particular, attributed graphs are
presented asymbolic graphgonsisting of a graph that includes as nodes some variathiehw
represent the values of the attributes, together with afdermulas that constrain the possible
values of these variables. This means that the underlygepah of values remains only implicit
to define the satisfaction of these formulas. The idea uyiderlthis approach was first intro-
duced in [L6, 17] to study graph constraints over attributed graphs andh, theed again with a
similar aim to specify model transformations by means ofgpas B].

Symbolic graphs can be seen as specifications of attributgtzhg. Actually, to compare the
standard approach to attributed graph transformation,efia@la semantics of symbolic graphs
in terms of classes of attributed graphs and we show hovbatiéd graphs can be identified
with some specific kind of symbolic graphs, which we call grded symbolic graphs. Then,
to compare the expressive power of the two approaches wsfiece to attributed graph trans-
formation, we first show that symbolic graphs, as it happeitis attributed graphs10], form
an adhesive HLR category 3, 4] to ensure that symbolic graphs inherit the fundamentairthe
of graph transformation. A variant of this proof is alreadgluded in [L7]. Finally, we show
that attributed graph transformation systems can be catedsymbolic graph transformation
systems but that the converse is not true in general.

The paper is organized as follows. In Section 2 we providard@nger of some notions that
are used in the rest of the paper. In particular, first, weflgrenumerate some notions from
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algebraic specification; then, we present E-graphs whiehuaed as the graph part for both
attributed graphs and symbolic graphs; finally, we definecttegory of attributed graphs as
presented in4]. In Section 3 we present the category of symbolic graphewsiy that it is
adhesive HLR. Section 4 is dedicated to relate the categofiattributed and symbolic graphs
and Section 5 to compare the expressive power of both agmesaeith respect to attributed
graph transformation. In Section 6, we draw some conclgsidfinally, in an appendix some
technical details and proofs are provided.

2 Preliminaries

We assume that the reader has a basic knowledge on algebeaitication and on graph trans-
formation. For instance, we advise to look @} for more detail on algebraic specification or at
[20, 4] for more detail on graph transformation.

2.1 Basic algebraic concepts and notation

As usual, a signaturE = (S Q) consists of a set of sor§s and a family of operation symbols of
the formop: s x --- x §, — S, denoted byQ, wheren > 0 ands,, ... ,S,,s€ S However, in this
paper, signatures include also predicates. We can deathistiextended case in two ways. The
first one is to consider that consists, in addition, of a family of predicate symbols. Ekeond
one, which we will use, because it is simpler, is based inidenisg that there is a special sort in
S, which we could callogical, and that predicate symbols are just operation symbolspifile

s X - X & — logical. In this case, logical connectives can be treated as operayimbols over
the logical sort. In addition, the truth valueandf may be seen as constants in the signature of
sortlogical.

A >-algebraA consists of ars-indexed family of set§As}scs and a functioropa : Ag, x - - - x
As, — Asfor each operatioop: s; x - - - X s, — sin the signature. &-homomorphisnh: A— A’
consists of ar&indexed family of functionghs : As — AL}scs commuting with the operations.
>-algebras and-homomorphisms form the categoiygs.

A congruence= on an algebré is an S-indexed family of equivalence relatioqs=s}scs
which are compatible with the operations. In this c#se= denotes the quotient algebra whose
elements are equivalence classes of valués BetweenA andA/ = there is a canonical homo-
morphism mapping every elementArinto its equivalent class.

Given signatureg,s’, with ¥’ C 2, everyZ-algebra can be seen a&’aalgebra, byforgetting
all the sorts and operations which are not2in In particular this is called th&'-reduct of a
>-algebraA and is denoted b5

Given a signatur&, we denote byls the term algebra, consisting of all the possibieground)
terms. Ts is initial in Algs, and the unique homomorphisha : Tz — A yields the value of
each term inA. Similarly, Tx(X) denotes the algebra of &lterms with variables irX, and
given a variable assignmet: X — A, this assignment extends to a unique homomorphism
o”: Ts(X) — Avyielding the value of each term after the replacement of eaciablex by its
valueo(x). In particular, when an assignment is defined over the tegebah, i.e.0 : X — Ts,
theno®(t) denotes the term obtained by substituting each varialsié by the terma(x).
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A Z-algebraA is finitely generated if every element s the value of some ground term. It
is not difficult to see that i is finitely generated there is at most one homomorphism kmiwe
A and any otheE-algebraA).

A specificationSP= (Z,Ax) consists of a signature and a set of axiom#x, which may
be seen as terms of logical sort. Equational specificatioesaapecial case, where the only
predicate symbol is the equality. Similarly, conditionglations may be considered as a special
kind of terms. GiverSP, Algsp denotes the full subcategory Afgs, consisting of alk-algebras
A satisfying the axioms in the specification, i.& = Ax In the case wher&P consists of
equations or conditional equations there is an initial lalgen Algsp, denoted bylsp.

2.2 E-graphs

E-graphs are introduced id][as a first step to define attributed graphs. Intuitively, agr&ph
is a kind of labelled graph, where both nodes and edges magdmwated with labels from a
given setE. The difference with labelled graphs, as commonly undetstds that in labelled
graphs it is usually assumed that each node or edge is ldbgith a given number of labels,
which is fixed a priori. In the case of E-graphs, each node ge @day have any arbitrary (finite)
number of labels, which is not fixed a priori. Actually, in thentext of graph transformation,
the application of a rule may change the number of labels afde or of an edge.

Formally, in E-graphs labels are considered as a spec&d ofanodes and the labeling relation
between a node or an edge and a given label is representegbgial «ind of edge. Notice that,
for instance, this means that the labeling of an edge is septed by an edge whose source is an
edge and whose target is a node (a label).

Definition 1 (E-Graphs and morphisms) Af-graphover the set of labels is a tupleG =
(Vo, L, Eq, Ent, EeL, {Sj i }je(onLEL}) consisting of:

e /g andL, which are the sets @raph nodesnd oflabel nodesrespectively.

e Eg, EnL, andEg|, which are the sets ajraph edgesnode label edgesandedge label
edgesrespectively.

and the source and target functions:
e Sg:Eg — Vg andig: Eg — Vo
e Sy EnL— Vg andty, : EnL. — L
e S| Bl —w Egandtg :EgL. — L

Given the E-graph& andG', anE-graph morphism fG — G’ is atuple(fy, : Vo — V&, fL:
L— L, fe, : Ec — EG, eyt EnL — ENL, fEeL : EEL — EE() such thatf commutes with all the
source and target functions.

E-graphs and E-graph morphisms form the cate@oryGraphs.

The following construction, which tells us how we can repldbe labels of an E-graph, is
used in the sections below.
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Definition 2 (Label substitution) ~ Given an E-gra@= (Vg, L, Eg, EnL, EeL, {Sj, 1) }jefeNLEL} )
a set of labels’, and a functiorh : L — L’ we define the E-graph(G) resulting from the substi-
tution of L alongh ash(G) = (Vg, L', Eg, Ex, Ee s {Sj, b }e(anLEL)) With:

* Vi =Vo,Eg = Eg, B\ = Ent,Eg = EeL, {S] = Sj}je(anLEL), andlg =1
e Foreveryec E{, :t{, (€) = h(tn.(€))
e Foreveryec EL, :tL, (e) = h(tg.(e))

Moreover,h induces the definition of the E-graph morphisin: G — h(G), with h* = (idy, h,
idgg, idg,, , ideg, ).

It is routine to see thadi(G) is indeed an E-graph arid is an E-graph morphism. In addition,
it should be obvious that H is a bijection therh* is an isomorphism.

2.3 Attributed Graphs

Following [4], an attributed graph is an E-graph whose labels are theesabfi a given data
algebra that is assumed to be included in the graph.

Definition 3 (Attributed graphs and morphisms) Given a signafiamn attributed graphover
> is a pair(G, D), whereD is a givenz-algebra, called the data algebra of the graph, @risl
an E-graph such that the det of labels ofG consists of all the values D, i.e. Lg = W¢5Ds,
where s is the set of sorts of the data algebralgmnotes disjoint union.

Given the attributed graphs ovEIAG = (G,D) andAG = (G/,D’), anattributed graph mor-
phism ht AG — AG' is a pair(hgraph, haig), Wherehgapnis an E-graph morphisnigapn: G — G’
andhgg is aZ-homomorphismhgyg : D — D’ such that the values D are mapped consistently
by hgraph andhgag, i.e. for each sors € Sthe diagram below commutes:

hal
Dg——— D,

|

_ /
LG hgraph LG
Attributed graphs and attributed graph morphisms form titegoryAttGraphs. Moreover,
given a data algebr@ we will denote byAttGraphs, the full subcategory oAttGraphs con-
sisting of attributed graphs ovex.

When defining transformation rules over graphAitGraphsp, usually the algebra under-
lying the graphs in the rules is n@t but a term algebra over the signaturelxf That is, the
attributes in the rules are not values but terms, typicali wariables. We call these graphs
term-attributed graphs

Definition 4 (Term-attributed graphs) Given a signatire= (S Q), aterm-attributed graph
over is an attributed graph over the algef@d X ), for some S-sorted set of variabl&s
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Moreover, as we will see in Sectidnit is also useful to define transformation rules where the
underlying algebra has been defined using a specificatioparticular this is useful when we
want that the match morphism used to apply the given rulsfggdisome specific condition. For
instance, suppose that the graph below is the left-hando$ideule.

2 —a
CFM»

and suppose that, whenever we apply this rule, we would higt the corresponding match
m satisfies thatn(x;) < m(x). We can do this as follows. First we define a specificatéh
extending> with the variablex; andx, as constants, and the desired condition as an axiom, i.e.:

SP= Sorts nat, bool

Opns 0:nat
X1,X%2 : nat
suc: nat — nat
true, false: bool
+ : nat x nat — nat
<:nat x nat — bool

AXms (X3 < Xp) =true

Now, let Tsp be the initial algebra associated $&, and Tsp|; its Z-reduct. InTsp the term
X1 < X and the terntrue belong to the same congruence class, which means that theyede
the same element ifsp|s. Therefore, any homomorphismfrom Tsp|s into aX-algebraD must
satisfy that, in this algebran(x;) < m(xy) yields thetrue value. Hence, we should define the
transformation rule over the algebfgg|s.

Definition 5 (Term-Attributed graphs over a specification) Given a sigree> and a specifi-
cationSP= (¥',Ax), with = C ¥/, aterm-attributed graph over the specification SP extending
is an attributed graph over the algefk|s.

In [4] it has been proven thattGraphs is an adhesive HLR category for a given class of
M-morphisms. Let us first recall this notiod,[13]:

Definition 6 (Adhesive HLR category) A categofy is adhesive HLR with respect to a class
M of morphisms if:

1. Mis a class of monomorphisms closed under isomorphismposition (i.e. iff : A —
Be M andg: B— Ae Mthengo f € M), and decomposition (i.e. fo f € M andg € M
thenf € M).

2. C has pushouts and pullbacks along M-morphisms. Moreovemdvphisms are closed
under pushouts and pullbacks.

3. Pushouts i€ along M-morphisms are van Kampen squares, i.e. for any cdativel di-
agram as the one below, assuming thaandg, are M-morphisms, if the bottom diagram
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is a pushout and the back faces are pullbacks then the topadidg a pushout if and only
if the front diagrams are pullbacks.

The key idea to show th&ttGraphs is adhesive HLR is the choice of the right kind of M-
morphisms. ActuallyAttGraphs is not adhesive because it fails to satisfy the van Kampen
property for arbitrary monomorphisms.

Theorem 1 AttGraphsis adhesive HLR, with respect to the class of M-morphismsisting
of all monomorphismshgrapn, haig) such that byg is an isomorphism.

3 The category of symbolic graphs

A symbolic graph can be seen as the specification of an a&dhlgraph (or of a class of attributed
graphs). In particular, a symbolic graph consists of an &plG whose labels are variables,
together with a set of formula® that constrain the possible values of these variables. i$n th
sense, we consider that a symbolic graph denotes the cladbaifributed graphs where the
variables in the E-graph have been replaced for values thkt¢@ntrue in the given data domain.
For instance, below on the right, we can see an example ofyssiraple symbolic graph and, on
the left, the (unique) attributed graph denoted by that ylmlgraph.

18
e it S S

with x_27)A =45 Nz=237
A (dp=12) A (d2—15) (d3—18)

However, as said above, a symbolic graph, in general deaatkss of graphs. For instance,
the graph below specifies a class of attributed graphs tbhtdas the graph depicted above on
the left, but it also specifies many other graphs.

1 Roughly speaking, an adhesive categds] fs like an adhesive HLR category, where M is the class of aihomor-
phisms
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d3

G (V) XD

with d3 <d;+d;

It may be noted that the class of attributed graphs denoteddyynbolic graph may be empty
if the associated condition is unsatisfiable.
Therefore, let us define what is a symbolic graph over a gita dlgebra.

Definition 7 (Symbolic graphs and morphisms) s&mbolic graptover the dat&-algebraD,
with £ = (S Q), is a pair(G,®), whereG is an E-graph over a8-sorted set of variableX =
{Xs}ses I-€. Lg = UsesXs, and® is a set of first-ordeE-formulas built over the free variables in
X and including the elements [l as constants.

Given symbolic graph§Gi, ®1) and(Gy, ®,) over the same data algebra D, a symbolic graph
morphismh : (G, ®1) — (Gz,®,) is an E-graph morphisth : G; — Gy such thaD = &, =
h*(®1), whereh*(®,) is the set of formulas obtained when replacingbinevery variablex; in
the set of labels 061 by hy (x1).

Symbolic graphs oveb together with their morphisms form the categ@ymbGraphs,.

In what follows, to simplify notation, even if it may be codsred an abuse of notation, we will
write h(®) instead ofh*(®). Moreover, also for simplicity, we may identify the set ofrfulas
@ with the formula consisting of the conjunction of all therfaulas in®, even if that formula
may be infinitary in the case whefeis an infinite set.

Notice that, according to the above definition, given anyr&b G, if D = ® < @' then
(G, ®) and (G, ') are isomorphic iSBymbGraphsy.

To show that symbolic graphs are an adhesive HLR categasy, e have to define our no-
tion of M-morphism over symbolic graphs. We consider thatidrphisms are monomorphisms
where the formulas constraining the source and target grapghequivalent (in most cases they
will just be the same formula). The intuition of this defioitiis based on the use of our cate-
gory of symbolic graphs to define graph transformation. Mwegisely, we think that the most
reasonable formulation of graph transformation rules incauntext is based on defining a graph
transformation rule as an E-graph transformation rulegttogr with a set of formulas that glob-
ally constrain and relate all the variables in the rule. Tifigquivalent to consider that the left
and right-hand sides (and also the interface) of a rule arst@ined by the same set of formulas.

Definition 8 (M-morphisms) AnM-morphism h (G, ®) — (G, ®’) is a monomorphism such
thatLg = Lg, i.e. hy is a bijection, an®d = h(®) < @',

It is not difficult to see that M-morphisms satisfy the regdirproperties. Then, to define
pushouts and pullbacks BymbGraphsy we use pushouts and pullbacksEn- Graphs, re-
spectively. More precisely, the pushout(&;, ®1) LS (Go, Po) e (Gg,®,) is a graph(Gs, ®3),
whereG; & Gs & Gy is the pushout 06, & Go by G, and®j is the conjunction of; (P;) and
02(®,). The case of pullbacks is similar, but the pullback(Gf,®;) & (Gs, ®3) & (G, dy)

is the graph(Go, ®o), whereG; & Go LA Gy is the pullback ofG, 9 G3 & G, anddg is the
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disjunction ofh; (®;) andhy(P;). However, sinc&y may include a strict subset of the variables
of ®@; and®,, in this casady is existentially quantified by the variables notGg.

Proposition 1  SymbGraphs, has pushouts and pullbacks.

To see that pushouts and pullbacks preserve M-morphismasténave to do some basic
logical deduction. If the diagram below is a pushout &nds an M-morphism then we have
to prove thaD | ®, < (g2(P2) A g1 (P1)). But, sinceh; is an M-morphism we may consider
without loss of generality thdt; is the equality on variables anty = ®;. Moreover, we may
also consider without loss of generality thgatis also the equality on variables and thatand
01 coincide when restricted to the variables. As a conseguevitat we would need to prove is
thatD = @, < (P2 Ahp(Pp)), sinceg (D) = P2 andhp(Po) = g1(P1). But this is obvious,
since we know thaD = ®, < hy(®Pg). The case of pullbacks is slightly more complex because
of the existential quantifiers if.

h
(Go, Pg) —— (G1,P1)

hzl lgl

<627 q)2> T <G37 q)3>

Proposition 2 Pushouts and pullbacks preserve M-morphisms.

Finally, to prove the van Kampen property we show that a calfeyimbGraphs is a van
Kampen square if and only if the underlying cubeEir- Graphs is also a van Kampen square.
To do this, again we just need to do some basic logical reagoiis a consequence we have:

Theorem 2 SymbGraphg is adhesive HLR.

4 Symbolic graphs and attributed graphs

In this section we present the relation between the categofisymbolic and attributed graphs
over a given data algebra. On one hand, we will see that eyenpaic graph may be seen as

denoting a class (a subcategory) of attributed graphs,iwhiy be considered its semantics. On
the other hand, we will see that every attributed graph camejesented in a canonical way by
a symbolic graph, which means that, for a given data alge¢heacategory of attributed graphs

can be seen as a subcategory of the corresponding categeysnbblic graphs.

Definition 9 (Semantics of symbolic graphs) Given a symbolic gr&phd®) over a data alge-
braD, its semantics is a class of attributed graphs defined assll

Sent(G,®)) = {(0(G),D) | 0:Lg — DandD = o(®)}
whereo (G) denotes the graph obtained according to Ref.

For example, given the symbolic graph below:
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d3

with d3 <d;+d;

we have that its semantics would include the following htiied graphs:

18 4
G e@s155 (68 ~(72550)

Conversely, we can identify every attributed gragBwith agroundedsymbolic graph whose
semantics consists only &G. More precisely a grounded graph is a symbolic gra@hd)
that includes a variabbg, for each element of the data algebra and where the only substitution
0 :Lg — D such thaD = o(®) is defined for each variable aso(x,) = v.

Definition 10 (Grounded symbolic graphs) A symbolic grafih, ®) over a data algebr® is
grounded if

1. Lgincludes a variable, which we denote Xy for each valuer € D, and

2. For every substitutiow : Lg — D, such thatD = o(®), we haveog(x,) = v, for each
variablex, € Lg.

Moreover, we defin&sSymbGraphsy as the full subcategory @ymbGraphs, consisting
of all grounded graphs.

Notice that if (G, ®) is grounded an@ : Lg — D is a substitution such th& = o(®) then
0*: G— o(G) is an isomorphism.

It should be obvious that the semantics of a grounded gragihdes exactly one attributed
graph, and that grounded graphs are closed up to isomorphioreover, we can see that
for every attributed grapAG there is a unique grounded symbolic graph (up to isomorphism
GSGAGQG) such thatSeniGSGAG)) consists ofAG. In particular, the E-graph associated to
GSGQAG) is obtained substituting every data valu@ a set of labels by a variablg, and the
set of formulas in the symbolic graph consists of an equagjeav, for each valuey in D.

Definition 11 Given an attributed graphG = (G, D), we define theggrounded symbolic graph
associatedo AG, GSGAG) as the symbolic graptG’, ®), where:

e The set of labelX of the E-graphG’ consists of a variablg, for each element € D.
e G = f*(G), wheref : D — X is a substitution such that for everye D, f(v) = x.
e d={x,=Vv|veD}.

Proposition 3

1. If SG is grounded then Sem(SG) consists exactly of onleuattd graph.

Proc. GraMoT 2010 10/ 25
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2. Grounded symbolic graphs are closed up to isomorphism.

3. For each attributed graph A& (G,D), SemiGSGAG)) = {AG}.
Proof.

1. If SG= (G,®) is grounded, by definition we know that Sem(SG) is not emptyces
® is satisfiable inD. Moreover, IfAGL,AG2 € Sent(G,®)) then this means that there
are substitutioner, 0’ : Lg — D such thatD = g(®) andD = o’(®). Butif (G,d) is
grounded this means thiag = {x, | ve D} and for eaclv € D: o(x,) =vandad’(x,) = v.
But this implies thato = ¢’ and thereforeAG, = AG,.

2. LetSG= (G, ®) be a grounded graph and 88 = (G',®’) be isomorphic t&SG This
means that there is an E-graph isomorphfsnG — G’ such thaD = ® < h(®'). But
this implies thaty : Lg — Lg is a bijection and io’ : Lg — D is a substitution such that
D = 0'(®') thena’oh: Lg — D is a substitution such th&t = ¢’ oh(®), and this means
that for everyv € D 0’ oh(x,) = v. Therefore, if for everw € D we cally, the variable
h(x,) then we have that, for eache D, d’(yy) = v, which means tha8G is grounded.

3. It should be obvious that, by constructidBSGAG) is grounded and, moreovehG €
SenMiGSGAG)).

Now, suppose th&& = (G, ®p) is a symbolic graph such thAG = (G, D) € Sen{SG).

Let us prove thaBGandGSGAG) = (G, ®ag) are isomorphic. First of all, we know that
G = 05 (Go) for a substitutionop such thaD = gg(Pg). But, sinceSG is grounded g

is an isomorphism. For similar reasons, we know thatG — G’ is also an isomorphism
thereforef* o gj : Go — G’ is an E-graph isomorphism. Finally, it is easy to see that
DE® < fooy(Po). In particular, ifo is a substitution such th&ll = o(®P) we have to
prove thatD = oo f o gg(Pyp) or, equivalently, that o f o gg = gp. But this is obvious
since, on one hand, by constructiarg D: f(v) =X, and, on the other hand, we know that
for everyv € D: g(x,) = v, which means that = o—. Conversely, ifo is a substitution
such thaD = oo f o gp(Pg) we can prove similarly that this implies that= o(P).

O

It should also be obvious that the encoding of attributegblygsan terms of symbolic graphs
defined byGSGcan be applied to all kinds of attributed graphs, i.e. noy émlattributed graphs
defined over a data algebiy but also to term-attributed graphs or to term-attributeabgs de-
fined over a specificatioBP. However, in the latter case, we prefer to define a differanbding
which may actually be seen as a variationG8G that we call itssymbolic representatiqrde-
notedSR and which will be used in the following section. In partianlif G is a term-attributed
graph defined over a specificati@P, we defineSRG) as follows. First, we assume that we
have a function thathoosesa term from every congruence class of term3dp. We call this
function achoice function Then, the symbolic representation®fwould be(G', @), whereG'’
is obtained replacing each labelin G (i.e. each congruence classTgp) by the variablex;,
wheret is the term chosen by the choice function when applieg] tmd whered’ consists of all
the equations isPand all the equationg =t for each ternt returned by the choice function.
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Definition 12  Given a specificatio®P= (XU X, ®), such that there is an initial algebfgpin
the category oSP-algebras, we say thah: Tsp — Ty x is achoice functiorfor Tspif for every
elementt’| € Tspif ch(t) =t’ thenTspl=t =t’, where|t’| denotes the congruence clas$’afith
respect to the congruence definedS®

Given SP, an attributed graphG = (G, Tsp|z), and a choice functioch for Tsp we define
the symbolic representation &G with respect tach, SR(AG) as the symbolic graptG', d'),
where:

e The set of labels of the E-gragi is X UY, whereY is disjoint withX and it consists of a
variableycn s for each elemend € Tspsuch thal ¢ {[X| | x € X}.

e G = f*(G), wheref : Tsp— Y is a substitution such that for eveayc Tsp, if a ¢ {|X |
x € X} thenf(a) = Yena)- Otherwise,f([x]) = x.

e & =0U {ych(a) =t| Yen(a) € Y Ach(a) =t}.

This means tha®’ includes as labels the variablesX¥nand a variablg/, for every elemena
in Tspwhich is not the congruence class of a variablX irThis means that the substitutidris a
bijection. As a consequence, for every attributed grdh= (G, Tspls), if SRn(AG) = (G, ')
thenG andG’ are isomorphic E-graphs.

It may be noted that we have not stated over which algBbtlae symbolic graptSRn(AG)
is defined. The reason is that we may consider 8fH(AG) is a symbolic graph over any
>-algebraD. Anyhow, if we consider thaBR(AG) is defined overTsps then SRy(AG) is
a grounded graph iBymbGraphsy_,, i.e. SRn(AG) is an object inGSymbGraphs; .
This means that, following Propositid3) SRn(AG) and GSG(AG) are isomorphic graphs in
SymbGraphsy; .

According to Propositior8, we can identify each attributed graph with a grounded sym-
bolic graph, and vice versa. Therefore, we may ask wheM#&sraphs is isomorphic to
GSymbGraphsy. The answer is negative sinGSGcannot be made injective on morphisms as
the following counter-example shows.

Examplel LetD be a data algebra consisting of two values of the same soithwte calla
andb. LetAG be an attributed graph having no graph nodes and no grapls édgethe graph
structure ofAG is empty, which means that it consists only of the label n@daadb). As a
consequencé3SGAG) = (G,xqa = aA Xy = b), whereG is an E-graph consisting only of the
label nodex, andx,. Now, there are four morphismg,, f,, f3 andf4, from AG to itself:

o fi(a)=a, fy(b) =b.
o ) a, fa(
o fs(@)=b, fa(b
o f4(@)=Dh, fa(b) =a.

However the only morphism fro8SGAG) to itself is the identity. For example we may
see that the mapping: {Xa,Xo} — {Xa,Xo}, definedg(xa) = Xa, 9(Xp) = Xa, does not define a
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symbolic graph morphism. In particulargis a morphism it should hold thBX = (x; = aA Xy, =
b) = g(xa = aA X, = b). But this is equivalent t® = (Xa = aAxp =b) = (Xa =aAxg =b),
which is obviously false.

The problem in the above counter-example is that we assuah@thcan define any mapping
between the elements of the algebra, while for the variaifldse grounded graphs we are forced
to map the variable, associated to a value to the corresponding variable assddi@mthe same
value. This problem disappears if the value algebra is fingenerated. In that case, we know
that the only homomorphism of an algebra into itself is thentity causing that morphisms on
attributed graphs should be the identity on data valuess figans that, iD is finitely generated
then the categorieattGraphspy and GSymbGraphs, are equivalent. Moreover, this kind of
restriction is quite reasonable since, otherwise, thebatgeould include values which we cannot
refer to. Nevertheless, as we will see in the following settiattributed graph transformation
rules are usually defined over non-finitely generated algebr

Proposition 4 If D is finitely generated theAttGraphs p andGSymbGraphs, are equivalent.

Proof. First, we will show that GSG can be extended to a functor ameh),tthatGSGis full,
faithful and essentially surjective. Lét: (G1,D) — (G,,D) be an attributed graph morphism.
SinceD is finitely generatedf,g is the identity andfqrapn is an E-graph morphism. Hence, if
f: D — Zp is a substitution defined for everye D as f(v) = x,, and® = {x, = v| v € D}
we know thatGSG(G;,D)) = (f(G1),P) to GSG(G,,D)) = (f(Gy), P). We defineGSG f)
as follows:

e Foreveryx € {Vg,Eg,EnL,EeL}: GSQ )y = fx.
e GSQf)_ is the identity.

Then, it is routine to prove th&@S(Q f) is indeed a symbolic graph morphism.

To prove thatGSGis full, we have to show that iAG; = (G1,D) and AG, = (G,,D) are
two attributed graphs arfu: GSGAG;) — GSGAG,) is a symbolic graph morphism then there
exists an attributed graph morphisin AG; — AG; such thatGSQ f) = h. But it is enough to
definef as follows:

e Foreveryx c {Vg, Ec,EnL, EEL}Z fy = hy.

e fag (and, thereforef,) is the identity.

To prove thalGSGis faithful we have to show th& SGis injective on morphisms, but this is
straightforward by construction. Finally, to prove tl@&$Gis essentially surjective, we have to
show that for every grounded grapisthere is another grounded gral®, which is isomorphic
to SG and an attributed grapAG such thatGSGAG) = SG. But by Prop3 we know that
SeniSG is not empty and that iIRG € Sen{SG satisfies thaGSGAG) = SG O
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5 Symbolic graph transformation and attributed graph transfor-
mation

In this section we compare attributed graph transformatitth symbolic graph transformation.
This comparison may seem trivial: if attributed graphs magéen as a special case of symbolic
graphs then we can conclude that attributed graph transtmis a special case of symbolic
graph transformation. However things are not so obviouswAdave seen, if the given data
algebraD is finitely generated, we can identify attributed graphs &&vith grounded symbolic
graphs oveD. This means, in that case, that if transformation rules pa@s of M-morphisms
in AttGraphs then these transformation rules can be considered eguividlespans of M-
morphisms inGSymbGraphs, and the application of these rules to a gr&hin AttGraphs
is equivalent to the transformation GISGAG) by the corresponding rules BSymbGraphsy.
The problem is that if the graphs that we want to transformrafgtGraphs, usually, the trans-
formation rules will not be spans of M-morphismsAttGraphs, but in AttGraphs, where
D’ is some free algebra ové& and, hence, different fror®d. That is, typically, transformation
rules over attributed graphs are defined using term at&ibgtaphs.

In order to compare attributed and symbolic graph transébion we start giving an example
of symbolic graph transformation rules and symbolic graphgformation.

Example2 Let us suppose that we are dealing with a class of graphs wédgpes have an
attribute that represents the distance between the sonctéaeget nodes. For instance, the
graphGq below may be an example of a graph in this class:

30
2 1o+@g c
!

20 10

O

More precisely, let us consider that the underlying algébthis class of graphs is the algebra
D of natural numbers, defined over the signatre

Sorts nat,bool

Opns O:nat
suc: nat — nat
true, false: bool
+ : nat x nat — nat
<: nat x nat — bool

We can see the above graph as a grounded symbolic graph. sleaté we would need
to replace the values which are bound to the edges of the dgnaphe variablesg,X15,X20,
andxso, respectively, and we would need to include the forma= 0) A (x1 = 1) A (X2 =
2)A-A(X0=10)A---A(Xa5=15) A--- A (X0 =20) A--- A (X30 = 30) A.... However, since
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we know that grounded symbolic graphs and attributed grapdhequivalent, for readability, we
will directly use the attributed graph representation.

Let us also suppose that we want to compute the distance shtiréest paths between any

two nodes. The symbolic graph transformation rpledepicted below, describes how a new
distance can be computed:

E
o Ly

with d3=d; +d,

If we matchl with d, 2 with c, and3 with b, and the variableg,,d,, andds with 10,15, and
25, respectively, then we can apply this rule to the above graph, becabse 10+ 15 holds
in D3, which is the translation of the rule condition, wheyd,, anddz are replaced by their
corresponding matches. Therefore, we would transf@gmto G :

10»(} 15-»

2

Similarly, matchingl with a, 3 with b, and2 with c, and the variabled;,d,, andds with
10,15, and?25, respectively, as before, it would be possible to apply theva transformation
rule, getting the grap,:

1o~ E‘Q

d

2 To be more precise, we would matdh d», andds with the variablesq o, X;5, andxgs, respectively.
3 Again, to be more precise, the condition that hold$xig = 10) A (xi5 = 15) A (Xo5 = 25) A ... implies (x5 =
X10+X25)
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Now, if we want to get rid of all the edges between two givenam@xcept of the one labelled
with the smallest distance, we could use the glldepicted belot

L’ K’ R

P80 e OO e e

1 2 1 1

with (X3 < xp) =true

We can apply the above rule to the grdp$y matching noded and2 to nodesa andc, and
variablesd; andd, to 25 and30, respectively, and also matching the edges bound to thesform
variables to the corresponding edge&inbound to25 and30. The result would b&s:

a 10— 15 c
b

20 10 25
d

RemarklL Obviously, symbolic graph transformation rules may be igolgiot only to grounded
symbolic graphs, but to arbitrary symbolic graphs. Actyathe fact that the category of sym-
bolic graphs is adhesive HLR ensures that the fundamerdgahttof graph transformatiord]
applies to symbolic graph transformation. However, in peag it may be impossible to apply
a graph transformation rule to an arbitrary symbolic grapien if seems very reasonable. For
instance, we may expect that it should be possible to apglyufe p, depicted above, to the
symbolic graphs depicted below on the left, yielding the graph on the right:

NN

x\y y
e b
with x<y with X <yAz=X+Yy

However, this is not possible. The first problem we find to ggpe rulep to G is that if
G only includes the variables andy then the variabl@3 in the rule could only be matched

4 A different alternative for the same problem would be to usae NACs in the first rule to avoid creating more than
one edge between any two nodes
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to x ory. Moreover, it would be unclear where do the variablie G' comes from. We can
overcome this problem by assuming tkatlready included the variabte although it was not
explicitly depicted because it was not bounded to any nodedge inG. Actually, we could
think that a symbolic graph is supplied with an unlimited ra@nof variables. However this is
not the main problem. We cannot apmyto G because < y does not implyz=x-+vy in D.
This problem is solved inlfg], where a new form of symbolic graph transformation, calkey
graph transformation, is studied. More precisely, usimy lraph transformatior’ would be
obtained applying to G in the obvious way.

Now, let us describe how we can define attributed graph toamsftion rules having a similar
effect to the symbolic rules in Exampke

Example3 Let us suppose that we want to describe the same proceduneEasunple2 for
computing shortest paths, but now using attributed gragtsformation rules. In this case, rule
p for computing a new distance between two nodes could be:

L

NN TS
e IR IR

The first thing that we should note is that the gra@asG:,G, andGs in ExampleZ2 are
defined over the algebEaof natural numbers, which means that they include the nlaiurabers
and the booleans as label nodes, even if they are not deiateel above figures. But the graphs
L,K, andR in the transformation rul@ are not defined over the same algebra. The reason is
that the labelsl;,d,, or di +d, are not inD, since they are not natural numbers. The simplest
solution that we can use here, is to consider th&t, andR are term-attributed graphs over the
algebraTs({d1,d;}), i.e. the term algebra over the variabthsandd,. These graphs would
include as label nodes all the possiklderms over these two variables, even if they are not
depicted explicitly. Now, according to the example, whenapely p to Gy in Example2 we
define a morphisnm from L into G matching 1 with d, 2 with ¢, and 3 with b. Obviousty
would also match the edgeslinwith the edges i in the expected way and it would also match
d; with 10 andd, with 15. But this is not all. The matct includes & -homomorphisnmgg
from Ts({d1,d>}) to D matching not onlyd; with 10 andd, with 15, but also each possible
term overd; andd, with its corresponding value, after assigningdioandd, the valuesl0
and15, respectively. This means that, for instanoewould also matcrsuqd;) with 11 or
sudd;) < sudsuddy)) tot. In particularm would also matcid; + dy with 25, even ifd; + d is
not explicitly depicted i, i.e. we need to compute the resulting valuelpf d, when defining
the match, before computing the transformation.

The fact that the values of the underlying algebra are censét(label) nodes of the attributed
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graphs, together with the fact that match morphisms mustopeomorphisms for the algebra
part, allow us to do some kind of conditional graph transfation without using a negative
application condition (NAC)3, 9], but using term-attributed graphs over a given specibicati
as discussed in Sectién3. For example, we can have an attributed graph transformatiep’”,
similar to rulep’ in Example2, for deleting all edges between two nodes except the onéddbe
with the shortest distance. In particulgt,, could be the rule below:

L/ K’ R

RO e O )

1 2 1 1 2

when defined over the algebTgp|s, whereSPis defined:

SP= Sorts nat,bool

Opns 0O:nat
dl,dz - hat
suc: nat — nat
true, false: bool
+ :natx nat — nat
<:nat x nat — bool

Axms (d; <dp) =true

For instance the application @f to the graphG, in Example2 matching nodéd. to nodea
and node to nodec would necessarily mataty to 25 andd, to 30 yielding the graphzs, also
in Example2.

Therefore, we can consider that, in a transformation sy$tenattributed graphs over a-
algebraD, each ruler is a span on the categoAttGraphsp, , whereD, = Tsp|z andSR is a
specificationSR = (X, ®;), such thak, = ZUX and®, is a set ofz;-equations or conditional
equations, since this ensures the existence of initialbaége Under this assumption, we may
see that attributed graph transformation systems can Ipeases special case of symbolic graph
transformation system. The idea is that every ruées above can be represented by a symbolic
transformation rule’, using the symbolic representation of the graphs iMore precisely:

Definition 13 Given a specificatiolsP= (XU X, @), such that there is an initial algebfap,
a choice functionch for Tsp, and an attributed graph transformation rule= ((L,Tsp|z) <
(K, Tspls) — (R Tsplz)), we define the symbolic representationr afith respect tach, SR (r)
as the symbolic transformation rule= (L' < K’ — R/, ®’) where:

o (L', @) = SRn((L, Tspls)),
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o (K',®') =SRn((K,Tspl5)),
o (R,®) =SRn((R Tsplx))-

Remark2 The inclusionsK’ C L' andK’ C R are a consequence, first, of the fact that we
assume thdt C L andK C R®; second, of the definition of how a label substitution is &pto

an E-graph; and third of the fact that the use of the choicetiom ensures that the substitution
of values inTsp|s by variables irY is the same on the three graplisR/, andK’'.

Moreover, it may be noticed that, by definition of the choigadtions, diagrams (1), (2), (3),
and (4) below are pushouts, whefg, fg, and fg are, respectively, the isomorphisms relating
L,K, andRwith L', K’, andR/, and wheref %, f:~1, and fz ! are their inverses:

L K ¢ R L/ K/ 24
fcl 1) le 2 lfa fcll (3) f;ll (4) lfél
L’ K€ =4 L K € R

Theorem 3 Let r = (AL — AK — AR) be an attributed graph transformation rule, where
AL, AK, and AR are attributed graphs ovegglz and SP= (XU X, @), let ch be a choice function
for Tsp, and let ¥ = SRy (r), then for every attributed graph A& (G, D) and every morphism
m: AL — AG there is a morphism’'m(SR(AL), @) — GSGAG) such that AG is transformed
into AH by r with match m, i.e. AG-™ AH, if and only if GSGAG) = GSGAH). Conversely,
for every morphism m (SRp(AL),®") — GSGAG) there is a morphism mAL — AG such that
GSGEAG) =T GSGEAH) if and only if AG="AH.

Proof. Let us assume thaL = (L, Tsp|s),AK = (K, Tsplz),AR= (R Tspl5)), andr’ = (L’ «—
K’ — R,®’), and let us consider the following diagramin- Graphs:

L/ )K/( Q
flf’l 3) f;fl (4) fs’l
L K€ R

m (5 (6)
01 C
G h I h H
9 M % ) 9%
/ o117 C /
G , I m H

where (5) and (6) are the pushouts defining the applicatiant@®AG with matchm, (G, W) =
GSGAG), (I')¥) = GSE(l,Tspls)), (H,W) = GSG(H,TsHlz)), 9,0k, 0% are, respectively,
the isomorphisms relatin@,|,H with G',1’,H’, and finally the morphismk;, for i = 1,2 are

5 Since the morphisms relatingandR are M-morphisms, without loss of generality, we may assumethey are
the identity on the algebra part and an inclusion on the gpaph
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defined as follows. For every element |’ which is not a labelh{(e) = hi(e), and for every
label e, h(e) = e. It is routine to see that, by definition @SGand as a consequence of the
fact thath; andh, are M-morphismsty; andh, are morphisms and, moreover, diagrams (7) and
(8) not only commute but are pushouts. Therefore, since we/khat diagrams (3) and (4) are
pushouts, then diagrams (3)+(5)+(7) and (4)+(6)+(8) ase pushouts. Therefore, if we define
m =g omo fffl and we show that is a morphism inSymbGraphs, the first part of the
theorem will be proved. Therefore, we have to prove Bat W = m'(¢').

We now that

O =dU{ya=t|yacYAch(a) =t} and¥ = {x,=v|ve D}

We also know that the only substitutiam such thatD = o(W) is definedvwv € D : o(x,) =
v. Therefore, we have to show that= o(n'(®')) or, equivalently,D = o(m(®)) andD =
o(m({ye=t|Ye € Y Ach(e) =t})). Finally, by definition, on the one hand, we have that for
everya € Tsp|z we havem(y,) = Xy, wherem(a) = v, which means thadr(m'(y,)) = m(a), and
on the other hand, for eache X, o(nm'(x)) = m(x).

Now, lett; = t, be an equation i®. Sincemyg is aZ-homomorphism andsp satisfies this
equation, we have th&@ = m(t;) = m(tz), implying D = o(m(t1)) = o(m'(t2)).

Lety, =t andch(a) =t. Then, on the one hand, we have tbdh'(y,)) = m(a) and, on the
other, sinceh(a) =t we have thatim= [t|, implying o(m (t)) = m(a). Thereforeg(m (ya)) =
o(m(t)).

The proof of the second part of the theorem is similar to tlepof the first part. We only
have to consider the diagram below:

L K C R
ft D fg ) fr
L/ )K/( Q

n 9 (109
/ o117 C /

G , I ™ H
g 1) gt (12 gk
D1C
G~ | —H

O

The theorem above shows that attributed graph transfasmatin be seen as a special case of
symbolic graph transformation. One may wonder whether kitth of transformations can be
considered equivalent in the sense that every symbolichgrapsformation rule can be coded
into an attributed graph transformation rulesuch that the application ofto a grounded graph
produces the same effect as the application’ ¢ the corresponding attributed graph. The an-
swer is negative as the counter-example below shows, whigmathat symbolic transformation
rules have more definitional power than attributed graphsfiamation rules.
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Exampled4 Let us suppose that the following symbolic grap is the left-hand side of a
symbolic graph transformation rule

—)

with (x=0)V(y=0)V (x=Y)

where the signature of the data domain is:

Sorts nat
Opns 0:nat
suc: nat — nat

and where the given data algelas the algebra of natural numbers. This means thatcéuld
be represented by an attributed graph transformatiorr’rulleenr’ would include as a left-hand
side an attributed graphG like:

wherea; anda, are elements of son¥ealgebraA. Moreover, there should exist a matotfrom
SGinto any grounded symbolic gra@@ if and only if there exists an equivalent matohfrom
AG into the corresponding attributed graph. In particularegithe symbolic graph:

(—)

with (X=n1) A (y=np)

wheren; andn, are two natural numbers, there should exist a homomorphiesm A to D
mappinga; to ny anday to ny if and only ifny = 0 orn, = 0 orny = np. Let us see that this is
impossible.

In particular, first, we will see that; anda, cannot be the value of a ground term (i.e. they
cannot be obtained applying tkac operation some number of times@o Then, we will see
that neithera; noray can be obtained applying any number of timesgheoperation to some
other value in the algebra. But, then this means that we canhraa anday, to any pair of
natural numbers, which implies that for instance we can hmatdo 2 anda, to 1, violating the
condition in the symbolic graph.

First, we may notice that we may assume without loss of géityetiaat A satisfies the axiom:

e:sudx) =suqy) = x=y

since for every homomorphis: A — D there is a unique homomorphidih: A/ =.— D such
that the diagram below commutes:

|

A/ =e
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where=¢ is the congruence ofs defined by the axiore andi is the canonical homomorphism
from A into its quotient, mapping every element fréanto its congruence class. Vice versa, for
every homomorphisti : A/ =.— D there is a unique homomorphism A — D such that the
diagram above commutes. Finally, we know thg ) = 0 orh(az) =0 orh(ai) = h(ap) if and
only if W (|ay|) = 0 orh(|ag|) = 0 orh/(Jay|) = N (Ja]).

Therefore, let us assume thatsatisfies the above axiom. Now, let us notice that neigger
noray can be the value of some ground tesuc'(0), for 0 < n. The reason is that, otherwise, if
Ny = np # n the match would be impossible. We can also see that it is resijple thag; is the
value of some terrmsuc'(ag), for 1 < nand anyap € A. Otherwise, ifn; = 0 the match would
be impossible, against the assumption, since if the matcatisfiesm(ag) = ng thenm/(ay)
would ben+ng. For similar reasons, we know that it is not possible #ds the value of some
termsuc(ap), for 1 < n and anyay € A. As a consequence, we can see that

A =A\{a|(a=sud(a;))V(a=suq(a)) for somen> 0}

is a subalgebra o&. Suppose, otherwise, thAt is not a subalgebra &. This would mean
that there is an elemeat € A' such thasug (&) € A\ A'. But this would mean thatug (&) =
SuQ (a1) orsuq(a’) = suQ(az). But this would imply one of the following cases:

1. sug(a') =& orsug(a’) = ap. These two cases are impossible according to what we have
proved above.

2. suq (@) = suG(ay) orsua(a) = suq(ag) for n> 1. However, since\ is assumed to
satisfy the axiore, this means that! = su® *(a;) or & = suQ *(ap), implying that
a € A\ A, against the hypothesis.

As a consequence of the previous facts we know that every lmmphismh : A — D is
uniquely determined by a homomorphi$m A' — D and by the values df(a;) andh(ay), in
the sense that givem, there is a uniqul extendingh’ satisfyingh(a;) = n; andh(ay) = ny, for
anyny,n, € D, and vice versa. But this implies that there is a morphismA — D satisfying
m (ag) # m'(az).

In general, a symbolic transformation rufe= (L' « K’ — R, ®’) over aZ-algebra D can
be simulated by an attributed graph transformation rute(AL — AK — AR) over aZ-algebra
A, if the specificationSP, whose signature i& plus the labels in’ (considered as constants),
and whose set of axioms @/, has an initial algebrdsp. The problem in the previous counter-
example is that the associated specification has no inlgabsa. In particular, to ensure the
existence of initial algebra®’ should include only equations and conditional equations.

6 Related work and conclusion

In this paper we have presented a new approach to deal withuéed graphs based on the new
notion of symbolic graphs, showing that the new categoryligaive HLR, which means that it
is adequate to define graph transformation.
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As far as we know, there are essentially three kinds of agpesto define attributed graphs
and attributed graph transformation. First, we have theaguhes 10, 7] where an attributed
graph is a paifG, D) consisting of a grapl® and a data algebfa whose values are nodes in
G. Second, we have the approach#&g, [1] where attributed graphs are seen as algebras over
a given signaturdSIG whereASIGis the union of two signatureASSIG the graph signature
andDSIG, the data signature, that overlap in the value sorts. Ingodatt, ASSIGmay be seen
as a representation of the graph part of an attributed graphi2] these two approaches are
compared showing that they are, up to a certain point, elguitzaFinally, we have the approach
[19] based on the use of labelled graphs to represent attrilgregzhs, and of rule schemas to
define graph transformations involving computations onlétels. That approach has some
similarities with our approach, including the simplicityopided by the separation of the algebra
and the graph part of attributed graphs. However, that @gbrdnvas also some drawbacks that
are briefly discussed in the introduction.

However, a fundamental theory of graph transformation lessformulated only for7], as
a consequence of its characterization as an adhesive HeBargt(for more detail sedl]). For
this reason, in this paper we have essentially used thabagpiprto study it in connection with
our approach based on symbolic graphs.

As we have seen, our approach can be considered an abstsionwef [7], since we work at
the specification level, rather than dealing directly wilipedras to define the attributes. How-
ever, as we have shown, it has more expressive power héor [the definition of graph trans-
formation rules. In addition to the expressive power, usiyigpbolic attributed graphs has some
other advantages. For instance, 1%|[working with symbolic attributed graphs simplifies cer-
tain kinds of operations defined on transformation rulesr éxample, this is the case of the
operation that, given two transformation rutesandr,, wherer; is a subrule of», yields a rule
r3 that computes the remainder Bfwith respect ta,, i.e. what has not been computed hy
but is computed by,. In particular, when working with symbolic graphs the &itite conditions
of r3 are just a simple combination of the attribute conditions,@&ndr,. However, if we would
have worked with attributed graphs, computing the attebdbrr; may involve some complex
equation solving.

Moreover, we think that there are further aspects relatesl/tobolic graph transformations
that deserve some further study. In particular, using kElgionditions to specify the attributes of
a graph may allow us to postpone finding the solution to afteittonstraints when performing
graph transformation. This can make attributed graph toamsation more efficient. In addition,
a generalization of this idea would allow us to define a certaim of narrowing that may be
useful in connection to several kind of problems.
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