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Abstract: Visual modelling notations such as constraint diagrams can be used for
the behavioural specifications of software components. This includes specifying
invariants on classes or types and preconditions and postconditions of operations.
However, one current problem in specifying components comes from the fact that
editing constraints manually is time consuming and error prone and so we may
adopt a pattern-based approach to alleviate this problem. One way to simplify the
definition of constraints is to identify and capture those recurring constraints in the
form of visual specification patterns. Such patterns would facilitate the automatic
generation of diagrammatic constraints. This paper identifies some specification
patterns that frequently occur when specifying software components and provides a
diagrammatic representation of these patterns. This will form the basis of a library
of specification patterns that could be used in the context of tools. We also show
how such patterns can be combined in order to specify more complex constraints.

Keywords: Formal specification, constraint diagrams, visual formalisms

1 Introduction

Component-Based Development or CBD is a software development approach where software
applications are built using components, and these components can come from a number of dif-
ferent sources, be written in several different programming languages, etc. By employing such
an approach one can improve the efficiency and quality of software development and increase the
flexibility of the resulting software systems [SGM02]. An essential prerequisite towards achiev-
ing the goal of CBD is an appropriate and standardized specification of software components.
Visual modelling notations such as constraint diagrams [Ken97] can be used for specifying the
behavioral aspects of software components and their constraints. Constraint diagrams are a for-
mal diagrammatic language that can be used for describing invariants on classes as well as pre-
conditions and postconditions of operations. However, developing constraint specifications for
software components is time consuming and an often error prone task. This is because typical
specifications may contain numerous constraints, which in addition often state complex facts
about the elements of the component’s model. Ackermann [Ack05a, Ack05b, AT06] proposes
a solution to this problem based on the idea of specification patterns from which OCL [WK03]
constraints can be automatically generated. Nine patterns that frequently occur in the behavioural
specifications of software components have been identified in [Ack05b].

To simplify constraint definition we follow a similar approach by using specification patterns
from which visual constraints can be generated automatically. This applies in the context of
specifying components in a diagrammatic way. As a first step towards achieving this goal we
identify a list of frequently occurring specification patterns and describe them in some detail. The
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main contributions of this paper are: the proposal to use visual specification patterns to simplify
component specifications, the identification of frequently occurring specification patterns within
the modelling framework and the development of a description scheme to characterize those
patterns. The OCL specification for the identified patterns will also be included alongside the
diagrammatic specification.

2 The Diagrammatic Framework

A class is modeled in terms of an invariant and its operations, specified as pre/post condition
contracts. The diagram in Figure 1 is an example of an invariant. This diagram consists of
three sub-diagrams. The closed curves (circles, ellipses, rectangles) represent sets. In each
sub-diagram, the curves form an Euler diagram and their spatial relationships express semantic
relationships between the sets: non-overlapping curves assert that the sets are disjoint; a curve
placed inside another asserts a subset relationship. We use the convention that labelled rectangles
represent types. The dots are called spiders. Unlabeled spiders assert the existence of elements in
the sets represented by the regions of the diagram in which they are placed. The labeled spiders
in this diagram are acting as free variables. An arrow represents a binary relation, where its
source and target may be either a spider or a curve; its target then corresponds to the image of
its source under a relation identified by the label on that arrow.

In the first sub-diagram there are two disjoint sets A and B. The spider labeled a is a free
variable and is the source of the arrow f , while the target of f is a spider in B; thus f represents
a function mapping each element of A to an element in B. Different spiders represent distinct
elements, so there is an element in B that is not the image of a under f . In the second sub-diagram
C and D are disjoint sets and each is a subset of A. As there are no spiders in it, the shaded region
represents the empty set. So this sub-diagram asserts that A is partitioned into subsets C and D.
In the third sub-diagram the rectangle represent a type. The arrow labeled r represents a relation
as it maps each element of A to a subset of I. The semantics of the sub-diagrams are conjoined
to give the semantics of the diagram.

Operations are divided into queries and events. Queries specify operations that may be ap-
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plied to an object of a class leaving its state unchanged, whereas events specify their allow-
able changes-of-state. Either may have input- or output-arguments that are declared in its pre-
condition. Each event also has a post-condition, wherein ‘dashed’ names denote values of the
corresponding variable after any occurrence of the event, adapting the same convention from Z,
and playing the role of the @pre operator in OCL.

The diagram in Figure 2 specifies an event for adding an element to a set. This event is spec-
ified in terms of a pre-condition and a post-condition. The pre-condition is specified above the
line and the post-condition below the line. The diagram can be interpreted as ‘if the conditions
above the line hold then the conditions below the line hold after an occurrence of the event’. In
the pre-condition x (which is of type I) is not in A and in the post-condition x is in A′, the updated
version of A. So this event adds x to A. This framework uses the convention ‘the rest remains
unchanged’ [SPB90] to allow operation constraints to be presented in concise from. More details
about the framework and the diagrammatic approach can be found in [HS05, FFH05].

Some of the benefits of diagrammatic notations are evident in the diagrams we have seen so
far, where both set intersection, disjointness and containment are represented visually. These
diagrams have properties that are thought to correlate with areas where diagrams are superior
to symbolic notations, from a user interpretation perspective, because they are well-matched to
their set-theoretic semantics [Gur01]. Extending this observation, using containment to represent
set inclusion has the added benefit that the transitive property of the (semantic) subset relation is
mirrored by the transitive property of (syntactic) containment.

3 Diagrammatic Specifications and Visual Specification Patterns

Most approaches to component specification recommend the use of formal mathematical nota-
tions since they enable a common understanding of specification results across different devel-
opers and companies. The use of formal methods, however, is not undisputed. Some authors
argue that the required effort is too high and the intelligibility of the specification results is too
low - for a discussion of advantages and liabilities of formal methods see [Hal90].

The use of visual notations for specifying components has the advantage of being more in-
tuitive and accessible to developers than formal mathematical notations that are based on set
theory and predicate logic. Despite their advantages visual modelling notations cannot solve
all problems associated with the use of formal methods. Writing and editing constraint dia-
grams manually can sometimes be time consuming and error-prone. According to Ackermann
[Ack05a], the same problem is encountered when using OCL to specify software components.
Similar experiences were made by other authors that use OCL constraints in specifications (out-
side the component area) [LDF04, HJR02]. They conclude that it takes a considerable effort to
master OCL and use it effectively.

However, behavioral aspects have great importance for component specifications. For exam-
ple, the specification of components within a video rental service case study have filled many
pages and required significant effort. For component specifications to be practical it is therefore
indispensable to simplify the diagrammatic-based behavioral specification.

A strategy to simplify diagrammatic specifications and reduce errors include better tool sup-
port and the use of predefined visual specifications patterns. The latter approach seems to be

3 / 14 Volume 31 (2010)



Visual Specification Patterns

particularly promising since the analysis of the video rental service case study reveals that most
of the constraints can be derived from a few, frequently occurring, specification patterns. An ex-
ample of such a pattern is the following: An attribute of a class in the specification type diagram
is unique for each instance. That is the attribute plays the semantic role of a key.

The way to use such patterns in the specification is as follows. Assume that the modeler
needs to describe a certain behavioural condition in the diagrammatic notation. First he checks
the library of predefined visual specification patterns which is part of his specification tool and
finds a matching one. Once a suitable pattern is found the modeler does not need to write/draw it
manually but instead he selects the pattern and provides the model elements for which the pattern
shall be applied. The tool then checks his input for consistency and generates the constraint.

The advantage of this approach is that the specification process is simplified because the spec-
ification is generated automatically, is less error-prone and requires less expertise in the visual
modelling notation. Moreover, when the patterns are well-known, it will be enough to specify
a pattern (without the generated diagrams) allowing the user to recognize the constraint more
easily.

In order to achieve this goal we proceed as follows. First, visual constraints that frequently
occur in component specifications are identified. Then we develop a description technique that
enables the description of those patterns in such a way that they can be adapted to special cases
and automatically generated into diagrammatic constraints. Lastly, the description technique is
applied to the identified patterns so that a generator can be implemented for each pattern. Any
newly identified patterns can easily be included in the pattern library at a later time.

4 Frequently Occurring Specification Patterns

In this section we present a list of patterns that frequently occur in the behavioral specification
of software components. These patterns will be presented in diagrammatic form using constraint
diagrams. In order to identify such patterns several case studies were considered, including
a video rental service [HS05], library systems, medical information models and a variety of
collected specification examples.

4.1 Description Scheme for Specification Patterns

In this section we provide a description of some specification patterns. This includes all of the
relevant details of a pattern presented in a structured and uniform way. The first characteristic is
the pattern name that identifies the pattern and serves as a short semantic explanation.

All patterns have one or more parameters that allow the adaptation of the pattern to specific
contexts. The pattern lists these parameters together with their types unless it is clear from the
context in which case the type is omitted. Parameter names are a means of matching up dia-
grammatic entities. Parameters can be of elementary type (like String) or are elements from the
diagrammatic notation. For example, a parameter could be a curve representing a set or an arrow
representing an association or relation. Type parameters are omitted when the pattern applies for
any type. The description can also document the restrictions on the application of the pattern,
such as the conditions that the pattern parameters must fulfill. For example, for a pattern with
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parameters op (of type Operation) and par (of type Parameter) it might be required that par is a
parameter of op.

4.2 Constraint Patterns in Invariants

In this section we consider patterns that frequently occur when specifying invariants on types or
components.

Pattern 1: Binary Partition

The binary partition constraint is very common (Figure 3). It partitions a given set A into two
subsets B and C. The name of the pattern is Binary Partition, and the sets A, B, and C are the
parameters of the pattern. The pattern constraint is an invariant that is valid for the input param-
eters. The constraint asserts that sets B and C partition set A (although the sets B and C can be
empty).

Examples of this pattern can be found when specifying medical information and library systems.
Applying the pattern to these systems yields the invariants shown in the two diagrams on the right
hand side of Figure 3. The diagram on the left is an instantiation of BinaryPartition(A,B,C)
with parameter A instantiated as Patient, B as Alive and C as Dead and asserts that a pa-
tient is either dead or alive (but not both). The diagram on the right is an instantiation of
BinaryPartition(Title, InColl,ExColl) and asserts that a title is in a library’s collection (InColl)
or not in the collection (ExColl). The binary partition constraint generalizes to any set partition.

In OCL, this constraint (ignoring the context) can be stated as follows:

inv : A = B→ union(C) and B→ intersection(C) = Set{}

where union and intersection are the OCL operations for set union and set intersection respec-
tively. The → indicates applying an operation on the whole set or collection. The keyword inv
indicates that the constraint is an invariant.
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Pattern 2: Disjoint targets

The pattern shown in Figure 4 is also very common, and asserts that the relational images of
some value under two relations are disjoint. The name of the pattern is Dis jointTargets, and
the parameters are the value x and the relations r and s. The constraint asserts that the relational
images of x under r and s yields disjoint sets and that these sets do not contain x.

The diagram on the right hand side of Figure 4 shows an instantiation of the pattern which comes
from a video rental store specification. It is Dis jointTargets(t,Rental,Reservation) and asserts
that the rentals and reservations of (title) t are disjoint, indicating that no video title can be both
rented and reserved (by the same member) at the same time. The set of members renting title t
is given by the closed curve at the end of the arrow labeled Rental; this set is seen to be disjoint
from the set of members reserving t.

In OCL, this pattern is common and occurs when navigating associations on a class diagram.
Suppose that r and s represent role names of two associations between class A and class B with
multiplicity ∗ at the B’s end. Let x be an object of class A, then x.r and x.s are two subsets of B de-
noting the relational images of r and s respectively. The constraint is specified in OCL as follows:

inv : x.r → intersection(x.s) = Set{} and not(x.r → includes(x)) and not(x.s→ includes(x))

In the context of OCL, the parameters of the pattern include the classes A and B, and the associ-
ation roles r and s.
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Pattern 3: Common target

The application of two functions to a value gives the same result. This pattern is shown in Fig-
ure 5. The pattern name is CommonTarget and the parameters are the value x and the functions
f and g. The pattern constraint asserts that the functional images of x under both f and g yield
the same element, which is distinct from x.

The diagram on the right hand side of Figure 5 shows an instantiation of the pattern that comes
from a medical information specification. It is CommonTarget(n,originator,destination) and
asserts that the originator and destination of (note) n must be common; for example, a doctor
writes a note to herself.

In OCL this pattern can be stated as inv : x. f = x.g and x <> x. f and x <> x.g, where f and g
represent role names of two associations between class A and class B with multiplicity 1 at B’s
end.

Pattern Dis jointTargets was specified in terms of relations while pattern CommonTarget was
specified in terms of functions. We could have specified variations of each pattern in terms of
functions or relations, respectively. There are generalizations of these patterns that could involve,
for example, the subset relation on the relational images.

4.3 Constraint Patterns in Operation Specifications

In this section we consider some patterns that frequently occur when specifying operations in
terms of preconditions and postconditions. So the type of constraints the patterns provide are
either a precondition or postcondition.

Pattern 4: Add element

This pattern is ubiquitous (Figure 6). It is common in many specifications when an element is
to be added to a set or collection. The pattern name is AddElement and the parameters are the
set A and the element x. The pattern constraint has two parts. The first part is a precondition
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Figure 6: Add element

constraint (above the line) which states that the element x is not currently a member of the set A.
The other part is a postcondition constraint (below the line) which states the effect of applying
the operation AddElement namely that x becomes an element of A.

An instantiation of this pattern is shown on the right of Figure 6. It is AddElement(t,Title) and
specifies an operation that adds a new title t to an existing set of titles in the context of a library
specification. Recall that the framework for the diagrammatic notation assumes that “the rest
remains unchanged” so that no existing titles are removed and no title other than t is added.

We can extend this pattern to include type information T for the elements. This is shown in
Figure 7. In this case the type of the element x and the elements of set A are made explicit. Type
information could, of course, be added to any pattern, such as the patterns considered earlier.

In OCL the precondition and postcondition constraints of the Add Element operation can be
stated as pre : A → excludes(x) and post : A → includes(x) respectively. Here pre : indicates
that the type of constraint is a precondition and post : indicates that the constraint is a post-
condition. For the library example, if catalog represents the set of titles for the library at a
point in time, then the precondition takes the form catalog → excludes(t) and the postcondi-
tion takes the form catalog→ includes(t). Note that the OCL postcondition states the minimal
requirement with the implicit assumption that the rest of the set remains unchanged. An alter-
native way to write the postcondition is to explicitly state that the rest remains unchanged as
catalog = catalog@pre → union(Set{t}), where catalog@pre denotes the set of titles at pre-
condition time.

Pattern 5: Add subset

The Add Element pattern can be generalized to add a set of elements to a set which we name the
AddSubset pattern. This pattern is shown in Figure 8. The parameters of the pattern are sets A
and X . The precondition constraint states that A and X are disjoint sets. The postcondition con-
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straint states that X is a subset of A. The condition for applying the pattern is that the elements
of both A and X are of the same type. Type information can also be included in the diagram.

Describing the add subset pattern in OCL is similar to the add element pattern. For the precondi-
tion we use the operation excludesAll instead of excludes, thus pre : A→ excludesAll(X). For
the postcondition we replace includes with includesAll, thus post : A→ includesAll(X).

Pattern 6: Remove element

Removing an element from a set is also a very common pattern. This pattern is shown in Figure 9.
The name of the pattern is Remove Element and the parameters include the element x, the set A
and the type T . The pattern can be applied under the condition that x and the elements of A
are of type T . The pattern constraint consists of the precondition which asserts that the element
to be removed is already in the set, and the postcondition which states that x is no longer an
element in the set A. The remove element pattern can stated in OCL as pre : A → includes(x)
and post : A→ excludes(x).
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5 Combining Patterns

Visual specification patterns can be combined in a variety of ways to specify more complex
constraints. The most obvious way of combining patterns is by simple conjunction. In the
diagrammatic framework these could be represented by two separate diagrams and frequently
this would be the most appropriate way of expressing the combination. However, there are more
interesting ways of combining patterns.

Figure 10 shows a constraint on a library system that specifies that the number of copies (in
the library’s collection) of an ex-collection title is zero, while an in-collection title has a positive
number of copies. The two subsets of the set Title, Ex-Coll and In-Coll are disjoint and partition
the set Title. NAT represents the set of natural numbers and NC is a function that takes a title and
delivers the number of copies of that title in the library’s collection. Visually, we can see that
the number of copies of an Ex-Coll title t1 is zero, as t1 is mapped to the element 0 by the arrow
NC and the number of copies of an In-Coll title t2 is positive, because the arrow NC maps t2 to
a natural number that is not zero, as it is distinct from zero, and is hence positive.

Figure 11 shows a variation on the Disjoint Targets pattern, called DistinctSourcesAndTargets.
A combination of the binary partition pattern (Figure 3), BinaryPartition(Title,ExColl, InColl),
and the distinct targets pattern, DistinctSourcesAndTargets(t1, t2,NC,NC), can be used to con-
struct the constraint represented in Figure 10. However, combining visual patterns is non-trivial.
In this example, the elements t1 and t2 need to be placed in the circles ExColl and InColl, re-
spectively. Defining a framework to facilitate this is challenging and will be considered in further
work. Finally, some post-application annotation is required in order to label one of the elements
0, although this could also be achieved by adapting DistinctSourcesAndTargets to include extra,
optional, parameters to label the target elements.

6 Related Work

In the context of object-oriented modelling and component specifications, OCL is considered to
be a very important formalism. However, developing concise and correct constraints in OCL is
difficult. This problem has been addressed by numerous publications some of which use the idea
of constraint patterns in order to capture recurring domain constraints and make it reusable.

Patterns for constraints in model-driven development were considered in [BHSS00], which
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proposes a mechanism for connecting design patterns with OCL constraints; it enables the in-
stantiation of OCL constraints automatically whenever a design pattern is instantiated. The no-
tion of constraint patterns is further elaborated in [AT06, ABB+05], where a small number of
simple constraint patterns is presented along with OCL templates.

The two publications [EM05, CGQ+06] introduce a larger number of constraint patterns. The
patterns presented there originate from the data modelling domain. [WKB07] builds on these ap-
proaches by introducing composite patterns which allows users to negate patterns and to combine
existing patterns using logical connectives such as implication. A category-theoretic language
independent approach to pattern formalization and composition is presented in [BGL10].

Our contribution adopts the idea of constraint patterns to diagrammatic modelling using con-
straint diagrams and other diagrammatic notations. By mapping some of the OCL constraint
patterns to constraint diagrams one gets the benefit of visualizing OCL constraints in the context
of object-oriented modelling using UML.

7 Discussion and Future Work

We have identified some basic diagrammatic constraint patterns that occur frequently in simple
case studies, with the intention of enabling the development of a tool, with access to a library
of constraint patterns, that enables a user to instantiate these patterns within their modelling
framework. The approach is flexible in general, allowing the use of the diagrams as both a
specification and modelling language, or just allowing the use of the diagrams as a constraint
language for placing constraints over some metamodel in the same manner as OCL is used, for
example.

Of course, we have only presented some examples of patterns, and one has no means of decid-
ing when one has “enough” patterns. However, as one means of measurement, we can create di-
agrammatic constraint patterns covering all of the examples of Ackermann [Ack05b]. However,
as usual there is a trade-off between the benefits of utilising diagrammatic notations and textual
notations, and attempting to understand the pro/cons of the choice of textual/diagrammatic nota-
tion for modelling constraints is one future avenue of interest. Attempting to classify constraints
into preferential categories of textual, diagrammatic, or either would enable tools to offer choices
of presentation of constraints, although of course this brings the disadvantage of requiring the
use of more than one modelling notation. For example, some constraints, such as Ackermann’s
2nd pattern, “Invariant for a property value (e.g. age > 18)”, appear to be be more naturally
expressed in textual format, whereas constraints that can be formulated to make use of spatial re-
lationships such as containment or exclusion (e.g. set membership or containment) benefit from
the diagrammatic notation.

In terms of the approach to pattern development adopted, one can ask the question of how
natural certain patterns are within the modelling language. Here, we took the stance of devel-
oping patterns with reference to existing diagrammatic case studies. As such, one can ask the
question: are all of the constraint patterns that arise inherent in the models we are dealing with,
or are some of them arising due to the modelling language itself? For example, properties like
the uniqueness of some attribute would seem to be inherent, whilst the modelling language may
tailor the type of model and constraint one constructs and so specific forms of constraints may
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occur. We observe that there is an overlap between the OCL constraint patterns that Ackermann,
who took an OCL-oriented developmental approach, identifies, and the diagrammatic constraint
patterns presented here, but that they are not the same; some constraints stand out more in one
language as opposed to the other (e.g. disjoint targets in the diagrams setting versus invariant
attribute value for textual setting).

There are obvious extensions of the constraint patterns such as extend binary partition to n-ary
partition, depicting this using ellipsis, and similarly for disjoint targets, for instance. Another
area of future investigation is the development of alternative patterns, within the same language,
for the same constraints. For example, using diagrams one can represent relations using labelled
arrows, or by allowing sets to be labelled by the Cartesian product of two sets, thereby utilising
a curve/label based representation. Although the use of arrows appears to be the most natural
way of visualising functions or relations in this notation, when one considers the combination of
constraints or constraint patterns, the choice of representation will play an important role in how
well such patterns fit together.

The avenue of facilitating the combination of constraint patterns is likely to bring great ben-
efits, extending the expressivity of the approach (enabling the specification of more complex
constraints, such as nested constraints) in a natural manner. This approach could take several
forms, but one could consider enabling the combination of two patterns that have something
(like a set) in common, enabling the building of more complex constraints over the model. One
could allow the matching of patterns within other patterns, such as asserting the uniqueness of
an attribute after specifying some constraint that contains that attribute. In these cases, the point
is that we are allowing the patterns to match not only over the model itself but also over the con-
straints already constructed. Further work also involves the development of a formal framework
to facilitate the use of diagrammatic constraint patterns in specification; such a framework could
be based on [BGL10].
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