Electronic Communications of the EASST

Volume 31 (2010)

Proceedings of the
Second International Workshop on
Visual Formalisms for Patterns
(VFP 2010)

Enforcement of Patterns by Constraint-Aware Model Trams&dions
Yngve Lamo, Adrian Rutle and Florian Mantz

12 pages

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



http://www.easst.org/eceasst/

@ ECEASST

Enforcement of Patterns by Constraint-Aware Model
Transformations

Yngve Lamo!, Adrian Rutle ' and Florian Mantz !

1 yla,aru,fma@hib.nphttp://www.hib.no*
Department of Computer Engineering
Bergen University College, Norway

Abstract: Patterns are descriptions and solutions for recurringlprodin software
design and implementation. In this paper, some ideas t@xafdrmal approach to
the specification of patterns in model-driven engineerM@E) is presented. The
approach is based on the Diagram Predicate Framework wioefdps a formal ap-
proach to (meta)modelling, model transformation and matehagement in MDE.
In particular, patterns are defined as diagrammatic spetidits and constraint-
aware model transformations are adapted to enforce psittévioreover, running
examples are used to illustrate the facade design pattetruictural models.

Keywords: Pattern, constraint-awareness, model transformatiodetmefactoring,
Diagram Predicate Framework

1 Introduction and motivation

Since the beginning of computer science, developing higdlity software at low cost has been a
continuous vision. This has boosted several shifts of progning paradigms, e.g. machine code
to compilers and imperative to object-oriented prograngnin every shift of paradigm, raising
the abstraction level of programming languages and teolgies has proved to be beneficial to
increase productivity. One of the latest steps in this tivachas lead to the usage of models and
modelling languages in software development processes.

Initially, models were adopted in software developmentpsses for sketching the architec-
tural design or documenting an existing implementatiorthénlatest trend in software engineer-
ing, however, models are regarded as first-class entitidteeafevelopment process. These mod-
els are used to automatically generate (parts of) softwasteims by means of model-to-model
and model-to-code transformations. In the literatures theénd is referred to as model-driven
engineering (MDE).

Software development projects have traditionally beett faliowing the waterfall approach,

a sequential process consisting of requirements speificalesign, implementation, testing,
deployment and maintenance phases. Often a new projectaviesdsfrom scratch by designing
the domain model, architecture model, code etc. withoutcegr methodology or systematic
use of earlier experiences. In this context, natural qoestivhich arise are: What is software
quality? What is best practice in software engineering? itha good design? What is an
appropriate architecture for a certain kind of softwardgeys? What is a good piece of software?

* The research is partially sponsored by the Norwegian Relsé€zouncil project FORMGRID.

1/12 Volume 31 (2010)


mailto:yla,aru,fma@hib.no
http://www.hib.no

Enforcement of Patterns by Constraint-Aware Model Transformations @

To address the problem with software quality, in the latdiég Kent Beck and Ward Cun-
ningham began experimenting with the idea of applying pasteo software engineerin®{87).
Moreover, the seminal bookGHJV94 on design patterns published in 1994 by the so-called
“Gang of Four” had a great influence on software developmeattige. Design patterns are
usually used as a solution strategy for a common problemfacgde, decorator, singleton, etc,
and often describe a solution for a part of a bigger systerthofigh design patterns have been
applied in software development for a long time, formai@abf the concept of patterns is still
an open research topiB8(GL09. Moreover, patterns are usually explained in a semi foronal
informal language.

In MDE the process of developing software is performed byaigeemi-)automatic develop-
ment steps in form of model transformations. Hence, to foépefit from patterns in MDE the
patterns should be expressed formally, facilitating meé@elsformations and automatic software
development steps. In MDE, patterns are used in differeasghand for different means during
the software development process:

e means for communication, e.g. among developers and dorrpérte
e guideline for design; i.e. as a specification for softwarsigie and software behaviour
e tool for conformance check; i.e. to check whether a modédvied a given pattern or not

e guideline for design change; i.e. if the design does nob¥olthe desired pattern, the
pattern may be forced by use of model transformations aredt@ing.

To be practically useful, patterns in MDE should meet soriteréa, e.g they should be formal,
abstract, conceptually clear, intuitive, adaptable andable. To enhance usability of patterns,
it is natural to employ a diagrammatic approach, but stithdading a precise (formal) meaning
of the diagrammatic models. The proposed approach of tipierga based on the Diagram Pre-
dicate Framework (DPFHut10 RRLW10, RRLWOQY, which is a generalisation and adaptation
of the categorical sketch formalisrB\V95], where user-defined diagrammatic predicate signa-
tures represent the constructs of modelling languages iora direct way. In particular, DPF
is an extension of the Generalised Sketchéal97] formalism [Dis03. DPF aims to combine
mathematical rigour — which is necessary to enable automatisoning — with diagrammatic
modelling.

In this paper, we use DPF to formalise concepts related tenpatin MDE. We will define
these concepts in general in the sense that they may bedfplidesign patterns or other kinds
of patterns such as input and output patterns of model wemsition rules.

Usually patterns describe the structure of an architectiuagoroblem solution for a (sub)system.
In MDE a pattern could be represented by a structural modeénBure the desired behavior of
the system the pattern should also have the possibilitydordee some of the constraints that the
system needs to fulfil. Hence a proper formalisation of pastshould also have the possibility
to express actual constraints.

The remainder of the paper is structured as follows. Se&iontlines DPF as the formal
underpinning of our approach. Secti8introduces the formal approach to patterns and pattern
enforcement. In Sectioh, some related research in patterns within MDE is preseritatlly,
in Section5, some concluding remarks and ideas for future work are ptede

Proc. VFfP 2010 2112



@ ECEASST

2 Diagram Predicate Framework

DPF is a generic graph-based specification framework timatstéo adapt first-order logic and
categorical logic to software engineering needs. DPF igigein the sense that it supports any
kind of graph structures (seBYv08] for the general case). However, the variant of DPF which
we employ in this paper is based on directed multi-graphs.

Before introducing the formal foundation of DPF, the teradgy adopted in this paper is
clarified in the following. The word “model” has different mm@ngs in different contexts. In
software engineering, model denotes “an abstraction afal @r language-based) system allow-
ing predictions or inferences to be mad&Uh06]. Models in software engineering are typically
diagrammatic. The word “diagram” has also different megsiim different contexts. In software
engineering, diagram denotes a structure which is basedapigj i.e. a collection of nodes to-
gether with a collection of arrows between nodes. Sincelgbgsed structures can be visualised
in a natural way, “visual” and “diagrammatic” modelling arften treated as synonyms. In this
paper, visualisation and diagrammatic syntax are cleadinguished. That is, the proposed
approach focuses on precise syntax and semantics of diagrdermodels independent of their
visualisation.

In DPF, models are represented(diagrammatic) specificatian A specificatior® = (S, C®:
¥) consists of an underlying graghtogether with a set aitomic constraintsC® [RRLWO09,
Rut1d. The graph represents the structure of the model while iatoomstraints add restrictions
to this structure. Atomic constraints are formulated bydmrates from(diagrammatic predic-
ate) signaturs. A signatureX = (P*,a”) consists of a collection of predicates, each having
a name, a shape graph, a visualisation and a semantic gtegtipn RRLWO09, Rutl(. The
formal definitions are as follows:

Definition 1 (Signature) A signatur& = (P>, a>) consists of a collection of predicate sym-
bols P> with a mappinga™ that assigns a graph to each predicate symholP>. o™ (p) is
called thearity of the predicate symbal.

Definition 2 (Atomic Constraint) Given a signatube = (P*>,a>), an atomic constrair(p, )
on a graphS is given by a predicate symbpland a graph homomorphisin o* (p) — S L.

Definition 3 (Specification) Given a signatude = (P>, ™), a specificatior® = (5,C%:%)
is given by a grapl$ and a seC® of constraintsp,§) on S with p € P*.

Definition 4 (Specification Morphism) Given two specificatio@s= (5,C®:%) and&’ =
(8',C%': %), a specification morphism : & — &' is a graph homomorphisi : S — S’ such
that(p,8) € C® implies (p,d;¢) € C%', illustrated by the following diagram:
550
TR

az(p)*>5$5’

Nodes and arrows of a specification have to be interpretedniayawhich is appropriate for

! The definition of atomic constraint corresponds to diagrantategory theory.

3/12 Volume 31 (2010)



Enforcement of Patterns by Constraint-Aware Model Transformations @

Table 1: A sample signatui® = (P>, a>)

D o™ (p) Proposed vis. | Semantic interpretation
[mult (m,n)] 1—%-2 ﬁ Vee X :m < |f(x)] <n,
) with0 <m <nandn>1
[injective] 1—%52 # Va,a' € X : f(x) = f(z) im-
pliesz = 2’

[surjective] | 1—%=2 % Vee X :U{f(z)}=Y

surj]

[inverse] 1

f
2 @ Vee X ,VyeY :ye f(z)iff
g

z € g(y)

] —=[¥] | Vo e X :h(z) =U{g(y) |y €

2
il%g [comp(f,h \Lg f(z)}

[ conposition]| 1

the corresponding modelling environme®HLWO0Y9. In object-oriented structural modelling,
each object may be related to a set of other objects. Heriseggppropriate to interpret nodes as

sets and arrow& %> v as multi-valued functiong : X — p(Y"). The powersep(Y') of Y is the
set of all subsets df; i.e. p(Y)={A| A CY}. Moreover, the composition of two multi-valued

functionsf : X — p(Y), g: Y — p(Z) is defined by(f;9)(x) :==U{9(v) |y € f(x)}.

Examplel (Sample signature and specification)lable 1 shows a small sample signatite=
(P*,a”). Fig. 1a shows a sample diagrammatic specificationC'®:3.) and Fig.1b shows the
underlying graptt of &; i.e. the graph o& without any constraints. I, the node¥ andY
are interpreted as se¥s andY, and the arrowsandg are interpreted as multi-valued functions
f: X —=p)andg:Y — p(X), respectively. Moreover, the functignis surjective this is
forced by the constrair{f surj ecti ve],d;) on the arrong. Similarly, the functionf is total,
this is forced by the constraifit mul t (1,00) 1 ,d3) on the arrow. Finally, the functions and

g areinverseof each other; i.evx € X andvy € Y : x € g(y) iff y € f(x). This is forced by the
constraint[ i nver se] ,d2) onf andg. The graph homomorphisnas, §, andds are defined as
follows:

(51(1) = Y, (51(2) = X, (51(0,) =g
602(l) =X, 6((2)=Y, da)=f, &) =g
o3(1) =X, 3(2)=Y, d3(a)=Ff

In DPF, we use specifications to represent models at any éév'emetamodelling hierarchy.
Moreover, we distinguish between two types of relationsveen models and metamodglped
by and conforms to A specificationS,, at leveln is typed by a specificatio®,,, 1 at level
n+ 1 if there exists a typing morphisa?~ : S,, — S, between the underlying graphs of the

Proc. VFfP 2010 4112



@ ECEASST

f[L.] f
X il ] Y X =Y
[suri] 9 g
@8 OF

Figure 1: A sample specification (& = (S,C®:X) and (b) its underlying graps

specifications. This corresponds to the relation betweendehand its metamodel in the graph-
based formalisation of the metamodelling hierarchy. Int@st, a specificatiors,, at level

n is said to conform to a specificatiafi,, ;1 at leveln + 1 if there exists a typing morphism
% 2 S, — S,.1 such that(S,,,.%) is an instance o6,,,; [Rutld. That is, in addition to the
existence of the typing morphisri”, the constraint€ ©»+1 are satisfied bysS,,, :%).

So far we have discussed two concepts for constraining fagans: typing and satisfac-
tion of atomic constraints. These concepts are used to difineelation between models and
metamodel. In addition to the conformance requirementgethee other constraints concerning
the overall structure of specifications. An example is if ar@ts to formulate that in EMF mod-
els “every model must have a root class” and “every class irodainmust have the root class
as its container, directly or transitively”. In DPF such staints are expressed lbyiversal
constraints[Rut1d. A universal constraint is defined as a specification mamphi : £ — R,
where£ andfR are the premise and the conclusion of the constraint, régplc A universal
constraint is satisfied by a specification if for any occuceeaf the premise an occurrence of the
conclusion should also be found.

The formal definitions of instance, typed specification gmetl specification morphism, con-
formant specification as well as universal constraints aengn [Rut1d.

3 Patterns in DPF

Is this section patterns and pattern matching are formalfindd. First a declarative definition
of patterns by means of metamodels is given. We also illtestraw patterns (and anti patterns)
may be used for model refactoring. Pattern enforcementrfsqeed operationally by means of
model transformation from a precondition (anti-pattemaispecification to the desired pattern.

3.1 Patterns

In MDE metamodelling is used for the definition of modellirntjuages. Following this line,
we define patterns by metamodels in DPF. That is, a patternbmageen as an instance of a
diagrammatic specification representing the pattern’sametiel. Pattern matching is used to
show which parts of a model conform to the metamodel of a gpagtern. A match of a pattern
in a specification is formalised by a specification morphisfiatches may be used to check if a
given design follows the desired pattern or not, i.e. patteding.

Definition 5 (Pattern) A patterf}3 is a diagrammatic specification typed over a metamel

5/12 Volume 31 (2010)



Enforcement of Patterns by Constraint-Aware Model Transformations @

=Y

(a)

Conforms to

| Work,

| Computerll | Computerzl

(b)

Figure 2: Metamodel for (a) the facade design pattern andr(th)example of a model following
the pattern/metamodel

Definition 6 (Match of Pattern) Given a pattef typed oveft and a specificatio®, a match
m P — & of the patterr3 in & is a specification morphism : 3 — &. The specificatior
followsa patterrty3 if there exists a match: : 8 — & such thatn(3) conforms todi.

Example2 (Facade Design Pattern)rhe facade element in the facade design pattern serves as
an interface for subsystems. That is, if a system consistewaral subsystems which are inter-
acting with each other, the facade design pattern shouldllmsved. In Fig.2a the metamodel

for the facade pattern is given. A model following this pattean be seen in Fig2b. The
model is a snapshot of a scenario illustrating how certainksvare deployed on some com-
puters. There are thragient elementsiNork;, Works, Workg communicating with twdserver
elementsComputer,, Computer, Vvia theFacade elemeniScheduler.

3.2 Pattern Enforcement

If a pattern?}3 is not followed by a specificatio®, then the pattern may be enforced by applying
a model transformation t&. The precondition for the enforcement of a pattern will therthe
source of a model transformation. This is also knowmts-pattern i.e. a design which is not
desired and need to be refactored. An anti-pattern is alsoedkeas a pattern (see Figfor an
anti-pattern for the pattern in Fig).

A model transformatioris the automatic generation of target models from sourceetspd
according to a transformation definition. thAansformation definitions a set of transformation
rules that together describe how a source model can bedramsdl into a target model.

Definition 7 (Model Transformation Rule) A model transformation rulés given by a spe-

Proc. VFfP 2010 6/12



@ ECEASST
E Ed
Client

n

Server
r; ;

Conforms to

(a)

| Work1| | Workz|
n n n
| Computer1| | Computer2|

(b)

Figure 3: Metamodel for (a) anti patterns and (b) an examfpésth pattern

cification morphism- : £ — 2R. An application of a model transformation rulds given by a
pushout construction, see e.B\W95] for a definition of pushout.

£ . R
ml P.O. \Lm*
G G*

(r,m)

where for each matche : £ — &, a matchm™ : R — &* is created.

Definition 8 (Pattern enforcement) Given a pattéfhand a specificatiol®, 3 may be en-
forced inG by performing a model transformatidnsuch that’(&) follows the patternij3.

The following example shows the enforcement of a patterrppyyéng model transformation.

Example3 (Pattern Enforcement) Building upon Example2. The example illustrates how to
refactor a client-server architecture such that it follals facade design pattern. Given the
specification in Fig4b, a model transformation enforces the facade design pedted creates
the design in Figdc. The model transformation consists of four rules:

1. There should be exactly o8eheduler
2. Every connection betweennork and aComputer is rerouted via th&cheduler
3. There should not be more than one connection betw€amauter and theScheduler

4. There should not be more than one connection betw&¢eurlaand theScheduler

7112 Volume 31 (2010)



Enforcement of Patterns by Constraint-Aware Model Transformations @

NAC LHS RHS LHS RHS LHS RHS
Scheduler | | Scheduler Work |Schedu|er| | Scheduler |
s ?C ?C T:C
|Computer| |Computer|

n |Schedu|er| |Schedu|er|
fd LHS RHS
Computer
(a)
| Work, | | Work, | | Work, | | Work, | | Work, | | Work, |
n 'n ‘n Transformation application
|Computer1| |Computer2| |C0mDUte"1| |Computer2|

(b) (c)

Figure 4: Using transformation rules (a) to enforce thegpatin Fig.2, a model (b) with an anti
pattern in it is refactored to a model (c) following the regdi pattern

3.3 Constraint-Aware Pattern Enforcement

The next step is to take constraints into account while definmatching and enforcement of
patterns. When a constraint-aware pattern is enforcedotiraints of the original specification
should be transformed into corresponding constraints erréifactored specification. One way
to achieve this is to use constraint-aware model transfoomaas described iIrRRLW1(J. In
this approach, constraints of the source models are usashtootwhich structures and which
constraints should be defined in the target model. Addingtcaimts to patterns can also be
used to specify the intended behavior of the design. Thisoseoutlines how constraint-aware
patterns are formalised and enforced in view of DPF.

Example4 (Constraint-Aware Patterns)Building on examples, in Fig. 5 we add a constraint
to the pattern metamodel in Fi§. The constraint expresses a requirement that if a ctient
is dependent on a cliemt, the host server(s) afi should reach the host server(s)cof This
requirement is expressed by the constraintip(d,s) C comp(s,r). That is, the result of the
composition ofl with s should be included in the results of the composition wvifith r.

Constraints at a modelling level may be expressed as uaivepastraint on the level below.

Example5 (Universal Constraints) The constraint in examplé is expressed as a universal
constraint in Fig6A. The specification in Figra satisfies this constraint since for any occurrance
of the premise (Figba) an occurrance of the conclusion (Fé) is also found. That is, iNorky

is dependent olvorks thenComputer; hostingWork,; should be able to reach the computer
hostingwork; .

Proc. VFfP 2010 8/12



@ ECEASST

Server

Figure 5: Metamodel of the anti-pattern from Fig extended with constraints

Target constraint

d
| Work |—P| Workzl
Source constraint

J' n l:n .

| Work, |L-| Work, |
{9

|Computer1| |Computer2| |Compute|:1| |Computv:-3r2

(a) ) . (c)
Constraint transformation

. d
| Work, ld—>| Work, | | Work, |—>| Work, |
l n lzn S

|Computer1|7-|Computer2|

:S
Scheduler
b’
) (b) t 3

:C

Hd
|Computer1|T.|Computer2|

(d)

(B)

Figure 6: Transformation of (A) source universal constsato (B) target universal constraints

| Work, l:—dnl Work, | | Work, |

Pattern application

|Computer1|T>|Computerz| |Computer1|7-|Computer2|
(b) (c)

Figure 7. A model (a) following an anti pattern is refactoteé model (b) following the required
pattern

9/12 Volume 31 (2010)



Enforcement of Patterns by Constraint-Aware Model Transformations @

Example6 (Transformation of Universal ConstraintBuilding on Example3. Fig. 7a shows
a specification with a match of the anti-pattern in F5g. The rules from Fig4a are used to
transform this specification to the specification shown ig. Fb. The universal constraint in
Fig. 6A is transformed to the universal constraint in F@B. This constraint ensures that if
Work; is dependent oworks and theScheduler runsWork; on Computer; then theScheduler
should runwork, on aComputers which is reachable from@omputer; .

4 Related Work

In [BGLO9] a formal definition of patterns is given as a set of graphs gragph morphisms,
defining a fixed part and some variable regions. Variableoregare used to specify multiple
occurrences of sub-patterns. Moreover, triple graphs sed tor coordinating models with the
pattern. The approach also uses synchronisation grapékste structural models and behavioral
models. In the DPF-based approach patterns are defined laynmo@els. Moreover, a variable
region may be represented in the metamodel with multigli€it .. «]. Coordination of patterns
with models are done by conformance and match of patterns.

Pattern-based model-to-model transformation is an adgghbidirectional and relational ap-
proach to model transformatioh 08| based on Triple Graph Grammar (TG&dh94. This
approach is based on triple patterns which express allowedasbidden relations between two
models, where the models are triple graphs. Triple pattesinde seen as graph constraints for
triple graphs, which specify both negative and positivest@ints. Pattern-based specifications
are compiled to operational TGG rules, which perform fohand backward model transform-
ations by graph rewriting. Matches of these patterns amdbised as triple graph morphisms.
Furthermore, inl[éw10], graph rewriting is generalised by using span-categofiieshe DPF-
based approach, universal constraints are used to exgesasaments which are expressed by
triple patterns in pattern-based model-to-model tramsé&dions. These constraints are also used
to ensure that pattern enforcement is performed in a waysthate constraints are transformed
adequately to the target models.

In [Gr@1( a concrete syntax for definition of input and output patteshmodel transforma-
tion rules is employed. That is, instead of using the absgwatax of the modelling languages
involved in the model transformation, as done usually, ce define transformation rules em-
ploying the syntax used for definition of the models themsgn addition, this approach offers
a collection operator which is used for matching and tramsédion of collections of similar sub-
graphs. This operator is used for the definition of patteritls variable regions. The DPF-based
approach employs also a concrete syntax for definition aépea. Moreover, since patterns are
defined by metamodels, variable regions are representedetgnmdel elements with variable
multiplicity.

5 Conclusion and Future Work
In this paper patterns are described by metamodels whiclepresented as diagrammatic spe-

cifications. Pattern enforcement is performed by executingel transformations that transform
anti-patterns to models following the desired pattern. Sb@ints are used to express require-

Proc. VFfP 2010 10/12



@ ECEASST

ments that should be fulfilled by models. We require thatgpatenforcement adequately trans-
forms these constraints.

Since patterns are described by metamodels, the relatiovebe anti-pattern and required
pattern may be seen as metamodel evolution. In this corgakern enforcement may be seen
as model migration, i.e. transformation of models confaigrio the anti-pattern metamodel to
models conforming to the required pattern’s metamodel. rA@resting line of research in this
direction is to find the conditions under which it is possibdeautomatically generate model
migration rules. Some preliminary results about model atign is done in[MRR™10].

An other interesting aspect with patterns is the relatidwben patterns. Patterns are diagram-
matic specifications and it is natural to relate them to edbRrdoy specifications morphisms.
A further study of different patterns and their relationswgd be done to obtain a taxonomy of
patterns.

References

[BC87] K. Beck, W. Cunningham. Using Pattern Languages floje-Oriented Programs.
Technical report CR-87-43, Tektronix, Inc, September 1987

[BGLO9] P. Bottoni, E. Guerra, J. de Lara. Formal FoundafmmPattern-Based Modelling.
In Chechik and Wirsing (eds.FASE 2009: 12 International Conference on Fun-
damental Approaches to Software EngineerinflgyCS 5503, pp. 278-293. Springer,
20009.
doi:/10.1007/978-3-642-00593-0_19

[BWOI5] M. Barr, C. Wells.Category Theory for Computing Scienc&{ZEdition). Prentice
Hall International Ltd., Hertfordshire, UK, 1995.

[Dis03] Z. Diskin.Practical foundations of business system specificatiGhgpter Mathem-
atics of UML: Making the Odysseys of UML less dramatic, pp53478. Kluwer
Academic Publishers, 2003.

[DW08]  Z. Diskin, U. Wolter. A Diagrammatic Logic for Obje€riented Visual Modeling.
In ACCAT 2007: 2¢ Workshop on Applied and Computational Category Theory
ENTCS 203/6, pp. 19-41. Elsevier Science Publishers B. Mst&rdam, The Neth-
erlands, 2008.
doi:10.1016/j.entcs.2008.10.041

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. M. Vlissidessign Patterns: Elements of
Reusable Object-Oriented Softwafeddison-Wesley Professional, 1994.

[Grg10] R. GrgnmoUsing Concrete Syntax in Graph-based Model Transformati&hD
thesis, Department of Informatics, University of Oslo, Way, February 2010.

[KGih0O6]  T. Kuhne. Matters of (Meta-)Modelingoftware and System Modelisg4): 369—
385, 2006.
doi:10.1007/s10270-006-0017-9

11/12 Volume 31 (2010)


http://dx.doi.org//10.1007/978-3-642-00593-0_19
http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://dx.doi.org/10.1007/s10270-006-0017-9

Enforcement of Patterns by Constraint-Aware Model Transformations @

[LGO8] J. de Lara, E. Guerra. Pattern-Based Model-to-Mdt@nsformation. InNICGT
2008: 4" International Conference on Graph TransformationsNCS 5214,
pp. 426—-441. Springer, 2008.
doi:10.1007/978-3-540-87405-8_29

[Low1l0] M. Léwe. Graph Rewriting in Span-Categories. In ighet al. (eds.)JCGT 2010:
5" International Conference on Graph TransformationslCS 6372, pp. 218-233.
Springer, 2010.
doi:/10.1007/978-3-642-15928-2_15

[Mak97] M. Makkai. Generalized Sketches as a Framework fom@leteness Theorems.
Journal of Pure and Applied AlgebiBl5:49-79, 179-212, 214-274, 1997.
doi:10.1016/S0022-4049(96)00007-2

[MRR*10] F. Mantz, A. Rossini, A. Rutle, Y. Lamo, U. Wolter. Toward Formal Approach
to Metamodel Evolution. INWPT 2010: 22¢ Nordic Workshop on Programming
Theory Pp. 52-54. November 2010.

[RRLWO9] A. Rutle, A. Rossini, Y. Lamo, U. Wolter. A Diagranatic Formalisation of MOF-
Based Modelling Languages. In Oriol and Meyer (ed$QOLS 2009: 4% In-
ternational Conference on Objects, Components, ModelsPatigtrns LNBIP 33,
pp. 37-56. Springer, 2009.
doi:10.1007/978-3-642-02571-6_4

[RRLW10] A. Rutle, A. Rossini, Y. Lamo, U. Wolter. A Formatison of Constraint-Aware
Model Transformations. In Rosenblum and Taentzer (edsASE 2010: 1%
International Conference on Fundamental Approaches taw&oé Engineering
LNCS 6013, pp. 13-28. Springer, 2010.
doi:10.1007/978-3-642-12029-9 2

[Rutl10] A. Rutle.Diagram Predicate Framework: A Formal Approach to MDEhD thesis,
Department of Informatics, University of Bergen, Norwa@,1P.

[Sch94] A. Schurr. Specification of Graph Translators witiplé Graph Grammars. In Mayr
et al. (eds.) WG :20h International Workshop on Graph-Theoretic Concepts in
Computer Sciencé.ecture Notes in Computer Science 903, pp. 151-163. Srring
1994.
doi:/10.1007/3-540-59071-4_45

Proc. VFfP 2010 12 /12


http://dx.doi.org/10.1007/978-3-540-87405-8_29
http://dx.doi.org//10.1007/978-3-642-15928-2_15
http://dx.doi.org/10.1016/S0022-4049(96)00007-2
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-12029-9_2
http://dx.doi.org//10.1007/3-540-59071-4_45

	Introduction and motivation
	Diagram Predicate Framework
	Patterns in DPF
	Patterns
	Pattern Enforcement
	Constraint-Aware Pattern Enforcement

	Related Work
	Conclusion and Future Work

