Electronic Communications of the EASST

Volume 34 (2010)

Proceedings of the
6th Educators’ Symposium:
Software Modeling in Education at MODELS 2010
(EduSymp 2010)

Teaching OCL Standard Library: First Part of an OCL 2.x Course

Joanna Chimiak—Opoka, Birgit Demuth

13 pages

Guest Editors: Peter J. Clarke, Martina Seidl

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Eg ECEASST

Teaching OCL Standard Library: First Part of an OCL 2.x Course

Joanna Chimiak—Opoka', Birgit Demuth’

! University of Innsbruck, Austria, joanna.opoka@uibk.ac.at
2 Technische Universitit Dresden, Germany, birgit.demuth @tu-dresden.de

Abstract: Our aim is to provide a complete set of materials to teach OCL. They
can be used in bachelor or master programs of computer science curricula and for
training in an industrial context. In this paper we present the first part of the course
related to the OCL Standard Library. This part provides model independent ex-
amples to teach OCL types and their operations. It enables users to gain a basic
understanding of the OCL Standard Library, which can be used as a starting point
to write model constraints (OCL specifications) or model queries. Additionally, to
the content of the paper, we provide a set of OCL packages, exercise proposals and
lecture slides.

Keywords: teaching material, OCL types, model independent OCL expressions

1 Introduction

The Object Constraint Language (OCL) is crucial in precise modeling [WKO03]. Despite its
usability it is far less frequently used in the industrial context [Amb04] than the Unified Modeling
Language. We consider three main reasons for this fact: weakness of standardisation, basic tool
support, and lack of social acceptance.

The OCL standard, also the recent 2.2 version [OMG10], has several known inconsistency
and incompleteness issues, as discussed in the recent OCL Workshop [CCGT09]. A crucial
problem is the discrepancy between the syntax and the semantics of the language specification.
The provided syntax is for 2.2 version, but the semantic is based on [Ric02] and was defined
for 1.3 version. The attempt to partially bridge the gap in the formalisation of OCL 2.1 was
proposed in [BKWO09]. The inconsistencies in the standard cause difficulties in understanding
and implementing OCL.

Fortunately, regardless of this fact there are many tools supporting OCL. Currently there is
a collection of OCL tools and UML tools with OCL support'. Developers of the tools strug-
gle with weaknesses of the standard and have to introduce their own interpretation what leads
to slight differences between implementations [GKBO0S]. Overcoming weaknesses of the stan-
dard in the academic context resulted in putting correctness of the implementation in the main
focus and neglecting a user friendly front-end. In the commercial context OCL is rather ne-
glected and it seems to be only an add—on to modeling tools. To partially address pragmatics of
OCL tools we proposed requirements for a user friendly integrated development environment for
OCL [CDSRO09].

I List of tools at OCL Portal: http:/st.inf.tu-dresden.de/oclportal/ OCL Software,
Comparison of tools by Jordi Cabot: http://www.jordicabot.com/research/OCLSurvey/index.html

1/13 Volume 34 (2010)

Teaching OCL Standard Library Eﬁ

The last issue, the social acceptance of OCL, results from the previous ones. There exists a
belief that it is hard to use, learn and teach OCL. It has been shown, e.g. [AckO1], that in general,
it is a difficult, error—prone and time—consuming task for practitioners to define OCL expressions.
Moreover, OCL expressions are often unnecessarily hard to read [VJ00], UML/OCL models
may be difficult to understand and evolve, particularly when constraints containing complex or
duplicate expressions are present [CWOO07]. Additionally, difficulties with teaching OCL were
reported in [MRO9]: introducing it to non software developers is almost impossible and the
professional programmers usually do not like it: it looks like a programming language, but it is
not; it has first order logic semantics, but it does not look like it.

Our aim is to support learning and teaching of OCL. Based on our teaching experience
we designed a complete OCL course material. The course consists of several parts introducing
basic types and operations, model and meta model specifications, model constraints and queries.
This paper presents the first part of the course with the basic concepts. It focuses on the OCL
Standard Library teaching its types by model-independent OCL expressions, however it is re-
quired to define an empty model context. According to our knowledge, our course is the first
resource focusing on the core of the OCL (Section 6.2). In our opinion teaching the core of the
language is important to its successful application in context of modeling and model transfor-
mation. Understanding of model-independent OCL expressions and proficiency in writing them
is a prerequisite of an efficient specification of model constraints or model queries. These skills
enable focusing on the content instead of on the form of the OCL expressions when writing large
specification in OCL, QVT? or other extensions of OCL. A modular teaching approach should
reduce the learning effort of newcomers to the language, as noticed in [AZHO08].

In the first line we assume the course to be used in the academic context in a computer sci-
ence curricula. An initial version of the course was successfully taught at the University of
Innsbruck in model engineering course in the master program®. In Dresden, OCL is one of the
topics in a course about advanced software engineering and is planned as part of a future course
about model-driven software engineering. The improved version of the course will be taught at
the University of Innsbruck and at TU Dresden. In both cases, students have strong basic skills
in object—oriented software development (analysis, design including design patterns and Java
programming). Additionally, the course will be freely available to academic teachers, students,
professional software developers and modelers with basic skills in object—oriented software de-
velopment. We provide two variants of the OCL specifications: standard and extended one. The
standard TU Dresden variant is suitable for language purists and for easier tool interoperability
as the following constraint shows:

context Model
inv addRealReal:
let v/: Real =
let v2: Real
vl + v2 = 2.0

n

1.0 i
= 1.0 in

It can be used with different tools, however due to inconsistencies in implementations we can
only grant the proper usage with the tools we tested. The extended University of Innsbruck
variant incorporates libraries, tests and documentation comments [CO09]. It is intended to make

2 QVT: Query/View/Transformation http://www.omg.org/spec/QVT/
3 http://st.inf.tu-dresden.de/oclportal/ Courses / Academic Courses / Specifying Constraints with OCL

Proc. EduSymp 2010 2/13

Eg ECEASST

learning OCL easier by enriching it with techniques used in programming such as the following
analogous OCL test example shows:

modelinstance none
test tAddRealReal:

let v/: Real = 1.0 in
let v2: Real = 1.0
expected vI + v2 = 2.0

Teachers have to decide what variant is the most appropriate one in their didactic context.

The remainder of the paper is structured as follows: Section 2 provides basic concepts crucial
for teaching OCL. Sections 3-5 succesively introduce OCL types: special, primitive and com-
posite ones. In Section 6 we describe teaching resources of our course and list alternative ones.
And finally, Section 7 gives a conclusion and future work.

2 Overview

In this section we give remarks on OCL as a typed specification language with a hybrid nature.

It is important to notice, that OCL is neither a typical programming language, a formal specifi-
cation language, nor a modeling language. As mentioned in [MRO09]: it looks like a programming
language, but it is not. OCL may be confused with programming language because of its con-
crete textual syntax, object—oriented paradigm and navigation style notation. On the other hand,
it follows the declarative paradigm, which makes it harder to understand and to debug. Moreover,
it has first order logic semantics, but it does not look like it [MR09]. It may make difficult to see
the paradigm shift to the logic and lead to confusing OCL with a programming language. OCL
is a modeling language as it is related to model engineering activities, but it is not a stand—alone
language. OCL has a hybrid nature, i.e. expressions are defined on a underlying metamodel
and evaluated for models (instances of the metamodel).

For the purpose of this paper we will only consider the basic part of OCL, which is independent
of any model. In Fig. 1 we present basic types, omitting types related to modeling, such as Model
Element, Enumeration, Unlimited Natural, OCL Message and OCL State. For didactic purposes
we introduced several additional elements to the type hierarchy to make it easier to understand.
The elements (Type, PrimitiveType, OCLSpecialType, CompositeType) are defined as abstract
and depicted in orange in Fig. 1. Please notice that they are not defined in the standard, at least
not this way. Furthermore, it is important to understand that OCL is a typed language. That
means that types and operations must match when constructing complex OCL expressions. Type
conformance rules are defined for pairs of types. A conformance of two types means that Typel
conforms to Type2 if an instance of Typel can be substituted at each place where an instance of
Type2 is expected [WKO03]. For example, Boolean is a subtype of OclAny and therefore conforms
to OclAny. This should be intuitively grasped by students with Java programming experience.

In the following sections we describe three type sub—hierarchies: OCL special types (Sec-
tion 3), primitive types (Section 4) and composite types (Section 5). Examples and exercises for
all described OCL types and issues are provided within our course material (Section 6.1).

3/13 Volume 34 (2010)

Teaching OCL Standard Library Eﬁ

l>| Type |<; .

AN

[] !

PrimitiveType OclSpecialType CompositeType
2\ N\
|Boolean|| Real | | String | | Oclinvalid | | OclVoid | Collection
o N N AN AN
| | I I I]
W | “«instanceOf » | “«instanceOf"s | Set | |Ordered$et | | Sequence| | Bag |
2\
invalid : null :
Oclinvalid OclVoid

Figure 1: Hierarchy of basic types according to the OCL 2.2 Standard Specification.

3 OCL Special Types

We consider three OCL special types: OclAny (Section 3.1), Oclinvalid, and OclVoid (Section 3.2).
Below we give definitions of each type and point out special characteristics of them.

3.1 OclAny Type

OclAny behaves as a supertype for all the types, except composite types. Features of OclAny
are available on each object in all OCL expressions [OMG10]. It is also important to stress that
OclAny is a supertype of all primitive types and OCL special types, but not of composite types.
Notice that some OCL parsers enable calling OclAny’s operations on collection types but this is
not standard conform. In principle OCLAny plays the role that Object plays in the Java language.
Thus OCLAny offers several reflection operations.

For the OclAny type comparison two operations are defined: = and <>. However, it is not
really clear how equality (=) is defined. The OCL specification defines it by object identity
(same object). Some OCL tools indeed implement equality by equality of values [SCCI10].
Furthermore, several checks for concrete types are defined: oclType() returns the type of which
self is an instance. ocllsTypeOf(- - -) checks if self is of the given type (but not a subtype of it),
ocllsKindOf(- - -) checks if the type of self conforms to the given type (self is of the given type
or a subtype of it), ocllsUndefined() checks if the type of self is of type OclUndefined (self is
equal to null), and ocllsinvalid() checks if the type of self is of type Ocllnvalid (self is equal to
undefined).* Additionally, there is a method for type casting: oclAsType(: - -).

In OCL it is possible to specify static (or class) features (attributes and operations) that are
similar in Java or other object—oriented languages applicable to types themselves instead to their
instances. Regarding the type system of the standard library there is only one static operation:
allinstances(). This operation results in a set of all instances of that type, including all instances
of its subtypes. However, the use of allinstances() is explicitly discouraged because it is difficult
to find all instances of a type. In the OCL standard library type hierarchy alllnstances() can only

4 There are two additional checks ocllsNew(), ocllsInState() but they are related to model elements.

Proc. EduSymp 2010 4/13

Eg ECEASST

be applied for the enumeration types Boolean, Ocllnvalid and OclVoid.

As OclAny is an abstract type, it can be used in a declaration (variable, operation parameters
and return type) but there are no direct instances of it. To teach operations defined in OclAny
values of concrete types must be used.

3.2 OclVoid and OcllInvalid Types

The type OclVoid is a type that conforms to all other types except Ocllnvalid. It has one single
instance, identified as null. Similarly, the type Ocllnvalid is a type that conforms to all other types
except OclVoid. It has one single instance, identified as invalid. Any property call applied on
null or invalid results in Ocllnvalid except for the operation ocllsUndefined() and ocllsInvalid()
[OMGI10]. The semantics of both types is not yet completely specified in the current OCL
specification and can be seen as problematic because that means that they conform to one another,
resulting in a generalization cycle. Conceptually, there are still some issues to be solved for the
next OCL 2.3 specification.’

For basic understanding of these concepts it is useful to make a programming language
metaphor>. Null in OCL can be understood similarly to null in Java. Operation invocations
on null values or operation invocations having null values as parameters result in invalid. This
situation can be compared with exceptions in Java (NullPointerException).

There are several special cases when dealing with null and invalid. Basically, handling of null
and invalid in logical operations results in a four—valued logic (Section 4.1). It is important to
make students aware of being careful when working with undefined and invalid values.

e Conversion to a collection type from null leads to an empty collection.

e Collections may contain null values but not invalid values. If a collection contains an
invalid value it is invalid as a whole.

e The specification does not specify how to deal with comparison operations: equality and
non—equality. However, for practical reasons, it should be possible to apply them on null
and invalid values.

e Invocation of ocllsUndefined() on invalid results in false and in particular cases it can lead
to false conclusions. E.g. 10.div(0).ocllsUndefined() evaluates to true although the result is
not null but invalid instead.

e Handling of null and invalid in logical operations results in a four—valued logic (Sec-
tion 4.1).

As OclVoid and OclInvalid conform to OclAny, both types inherit all operations from OclAny
(Section 3.1). The only specific operations are operations that redefine the OclAny type compar-
ison operation (=) for OclVoid and Ocllnvalid.

5 A discussion on Treatment of ocl undefined and ocl invalid at the OCL Group at LinkedIn provides insights on the
practical solution used in Dresden OCL (Claas Wilke) and OMG OCL 2.2 revisions (Ed Willink).

8 Thus, invalid can be considered as some sort of Exception or Throwable. Unfortunately, invalid in OCL is not
typed, and thus, it is not possible to find out what went wrong nor catch specific subtypes of exceptions — from the

discussion on Treatment ...

5/13 Volume 34 (2010)

Teaching OCL Standard Library Eﬁ

4 Primitive Types

In this section we describe how to deal with primitive types in OCL: Boolean, Real, Integer
and String. In this part there are a few issues to be careful about, especially four—valued logic
(Section 4.1) and a weak support of advanced arithmetical (Section 4.2) and text operations
(Section 4.3). In Section 4.4 we show how to overcome weaknesses of OCL.

4.1 Boolean Values and Logical Operations

Basically OCL users work with the Boolean values true and false that are the instances of the
Boolean type. For these standard Boolean values Boolean algebra and De Morgan’s laws are
applied. Additionally we have to, as explained in Section 3.2, handle two special OclAny values
(null and invalid) in logical operations resulting in a four—valued logic (4VL). As the Boolean
algebra is a logical calculus of truth tables, the OCL specific 4VL is also represented in a truth
table (Tab. 1). Logical operations can be written both using operators by reserved keywords (such
as a and b) and by infix operators (such as a.and(b)). OCL provides the basic logical operations
and, or, not as well as the derived operations xor and implies. Conflicting reserved keywords and
property names can be solved by using the (underscore) prefix. For future OCL specifications it
is proposed that the above mentioned example is written as a._'and’(b).

Table 1: A truth table for the four—valued logic in OCL. Note that the truth table in the cur-
rent standard [OMG10] contains errors which will be removed in the next OCL version (2.3).
The presented truth table is the already updated one.

a b ‘ not a aorb aandb aimpliesb axorb
false false true false false true false

false true true true false true true

false null true invalid false true invalid
false invalid | true invalid false true invalid
true false false true false false true

true true false true true true false

true null false true invalid invalid invalid
true invalid | false true invalid invalid invalid
null false invalid invalid false invalid invalid
null true invalid true invalid invalid invalid
null null invalid invalid invalid invalid invalid
null invalid | invalid invalid invalid invalid invalid
invalid false invalid invalid false invalid invalid
invalid true invalid true invalid invalid invalid
invalid null invalid invalid invalid invalid invalid
invalid invalid | invalid invalid invalid invalid invalid

Proc. EduSymp 2010 6/13

Eg ECEASST

4.2 Numbers and Arithmetical Operations

There are two types to express numbers in OCL: Real and Integer, where Integer is a subtype of
Real. The basic arithmetical (4, —, /, *, abs(), min(---), max(---)) and comparison operations
(>, <, >=, <=) are defined for numbers. Two types of conversion from Real to Integer are
provided (floor(), round()) and additionally, in OCL 2.2, a conversion to string was introduced
(toString()). There are two operations defined for the Integer type only: integer division (div(- - -))
and modulo (mod(: - -)).

4.3 Strings and Text Operations

Text operations, especially string comparison, are a weakness of OCL. The latest OCL spec-
ification [OMG10] provides several new operations on strings. In OCL 2.2, it is possible to
access single or all characters of a given string: at(---) which queries the character at given po-
sition and characters() which obtains the characters of the string as a sequence. Additionally, to
case conversion (toLowerCase(), toUpperCase()) an explicit operation to compare strings under
case—insensitive collation was introduced: equalsignoreCase(---). Another useful operation is
indexOf(- - -) which queries the index in self at which a given substring occurs in a string or zero
if the substring does not occurs in the string. It can be used as a check if a given substring occurs
in a string.

4.4 Extensions

Additionally, to the standard library we show two mechanisms for extending expressiveness of
OCL: one within OCL (definition mechanism) and another outside of OCL (black box imple-
mentations). The black box implementations are used in QVT to allow complex algorithms to be
coded in any programming language. Additional definitions can be used for advanced text opera-
tions and complex arithmetical algorithms, whereas back box extensions for regular expressions.

5 Composite Types

In this Section, we motivate and explain the introduced abstract Composite Type with the sub-
types for collections and tuples (Fig. 1). Tuples and all collections are composite because they
contain elements conform to any concrete subtype of the root type Type. The term element is
used for an object in a collection. The type Type of the elements are designated in the OCL
specification as template type T’ in all collection operations. The elements in a tuple are under-
stood as attributes of the tuple each attribute consisting of a name and a type. Students should be
made aware that this type hierarchy is designed based on the composite design pattern. Although
the type hierarchy in the OCL specification is not exactly defined as in this paper we found this
representation from a conceptual and didactic point of view more comprehensible. Note that the
OCL specification uses the term part to explain what a tuple is. But we prefer for orthogonal
notions the term element to motivate the composite pattern.

7/13 Volume 34 (2010)

Teaching OCL Standard Library Eﬁ

5.1 Collection Types

OCL collection types can be explained based on the MultiplicityElement from the UML speci-
fication [OMGO09]. Besides the definition of the bounds of an actual multiplicity the Multiplic-
ityElement also includes specifications of whether the values in a instantiation of this element
must be unique or ordered. If the upper bound of the specified interval of a multiplicity is greater
than one we have an association end that results in a collection. The UML specification defines
based on the Boolean properties IsUnique (default value = true) as well as IsOrdered (default
value = false) of a MultiplicityElement different kinds of a collection (Set, Bag, Sequence, and
OrderedSet). Collection types in OCL are the same and therewith their definitions conform to
the UML specification. Tab. 2 shows the mapping of the properties to the collection types. A
discussion on the Collection types hierarchy may be found in [BGH " 09].

Table 2: Classification of collection types based on their properties.

PROPERTIES ‘ IsOrdered not IsOrdered
IsUnique OrderedSet Set
not IsUnique | Sequence Bag

During a course it should be explained that there are two kinds of operations for each collection
type: (basic) operations (e.g. size()) and predefined iterator expressions (e.g. forAll(---)). In
[WKO3] basic operations are classified by their meaning basically into following groups:

equals(=) / notEquals (<>) operations,

including / excluding operations,

the flatten() operation,

transformation operations (asSet(), asSequence(), asBag(), asOrderedSet()),
typical set operations (union(- - -), intersection(- - -), difference (—),
symmetricDifference(: - -)),

e order related operations (first(), last(), at(- - -), indexOf(- - -), insertAt(- - -),
subSequence(- - -), subOrderedSet(- - -), append(- - -), prepend(- - -), reverse()).

For better comprehension we recommend presenting a matrix of operations with their signa-
tures and owning types. Due to space limitations, we refer to our teaching materials (Section 6.1).
A sensible issue is the difference between includes() and including() as well as excludes() and ex-
cluding(). It should be carefully explained on their signatures and examples. The including oper-
ation results in a new collection with one element added to the original collection [WKO03]. The
include operation results in true if the parameter object is an element in the collection. Another
issue is the incompleteness of the list of all collection operations’. In particular it is generally
recognized that some of the above listed collection operations are missing for the OrderedSet
type in the OCL 2.2 specification.

Iterator expressions loop over the elements in a collection and have an OCL expression
as parameter. Because iterator expressions are complex to write, often recurring iterator ex-
pressions are predefined (exists(---), forAll(---), isUnique(---), any(---), one(---), collect(---),

7 see the OMG OCL discussion mailing list at http:/www.omg.org/issues/ocl2-rtf

Proc. EduSymp 2010 8/13

Eg ECEASST

collectNested(- - -), sortedBy(---), select(---), reject(---)). Basically it is possible to add new
iterator expressions in the OCL standard library. Students should study the mapping of the pre-
defined iterator expressions to the iterate construct and learn by a few examples to write iterator
expressions themselves.

5.2 Tuples

The TupleType (informally known as record type or struct) combines different types into a single
aggregate type. As explained above, the elements of a TupleType are described by its attributes
each having a name and a type. The type names are optional, and the order of the elements is
unimportant. According to the composite pattern there is no restriction on the kind of types that
can be used as elements of a tuple. Each element is uniquely identified by its name. It is possible
to compose several values into a tuple. A tuple consists of named parts, each of which can have
a distinct type. The values of the parts may be given by arbitrary OCL expressions.

The tuple type is crucial for the power of OCL as a query language. Before introducing this
type, OCL (1.x) was not equivalent to the relational calculus [MC99]. However, there are no
additional operations defined for the tuple type. The elements are accessed by their names and
the OCL dot notation. It is very important to teach how to deal with single tuples and collections
of tuples.

6 Teaching Resources

In this section we provide information about resources we provide for the afore described course
(Section 6.1) and we compare it with other available resources for teaching OCL (Section 6.2).

6.1 Course on OCL Standard Library

The course package® contains lecture slides, source files with tasks for students and OCL expres-
sions tested with the SQUAM OCL editor and Dresden OCL.

Lecture slides provide an extended version of diagrams for all types, their definitions and
issues to be careful about. The slides, with the project and the set of OCL expressions, can be
used as self-learning material.

The project consists of 16 packages with over 250 OCL expressions. In the basic part, ex-
pressions correspond to particular OCL types (Fig. 1 in Section 2). The advanced part consists
of explicit definitions of predefined iterator expressions (Section 5.1) and complex method def-
initions for numbers and strings (Section 4.4). There are, in total, over 100 exercises to test or
extend existing OCL expressions or to write new one.

The source files are provided in two variants: standard and extended [CO09]. The overview of
available versions in given in Tab. 3. Please note that there are unfortunately differences in the
semantics how different tools evaluates OCL expressions. A benchmark provided in [GKBO08]
is dedicated for an older OCL specification. It points out important issues, however the OCL
specific 4VL with the invalid value is not considered there. When teaching and learning OCL,

8 http://squam.info/ocleditor/doc/OCLCourse/

9/13 Volume 34 (2010)

Teaching OCL Standard Library Eﬁ

~ @ Extensions 2681 [£] . i
e Project Statistic
@ ArithmeticalOperations.oclx 2681
@ RegularExpressions.oclx 2682 55 Sélf 53 T 550
n so 500
@ TextOperations.ochx 2681 E 50 @
¥ & OCLTypes 2674 [£ 40 u + 400 'g
< gy CompositeTypes 2674 Q35 T30 Q
w30 r
() Bags.ochx 2595 Y- 500 o
) 25 250
@ Collections.oclx 2676 o~ 20 17 1200 @
() terators.oche 2681 g 15 T150 &
(@ OrderedSets oclx 2619 E " oo~
| ES 0 1 +50
(@ Sequences.oclx 2619 i Z 0 | ; ; O ; ; ——r— o
() Sets.oclx 2677 #L #0D #Q #T #TM
@ SetsBags.ock 2599 Problems (E Console mﬁ Drupemesw @] Error Lug} &0 Synchronize}
@ Tuples.oclx 2535 Filter matched 100 of 131 items
< [y OCLSpecialTypes 2674 v | |Description

@ oCLAny.ochx 2675
@ oCLinvalids.oclx 2634 =
@) oCLvoids.oclx 2634 =

¥ (g PrimitiveTypes 2619
(@ Booleans.oclx 2678
() Reals.ochx 2678

TODO TASK: check if this definition is valid for a too weak condition,

! 70D0 TASK: comment out particular examples and run the test

TODO TASK: create a test for a sequence of tuples, use a serveral operations defined for Sequence
TODO TASK: create a test for reject() and a corresponding iterate()

TODO TASK: create a test with accumulater of different type than the range formula

@ strings.ochx 2619 Bl M ErARATRCr Frania S bart itk bha ARt Amarstiane far ntamar and Bnal mimksre

Figure 2: A screen—shot from the SQUAM OCL Editor with OCL course resources. At the left
side: the project’s structure in the project explorer can be seen. At the top-right side: project
statistics with number of elements and lines of code. At the bottom-right side: exercises for
students denoted in the OCL files with '~ TODO TASK: ..."” and navigable from the task view.

teachers and students should be aware of differences between standard specification and its im-
plementations.

Table 3: Overview of OCL resources with corresponding OCL versions and tool configurations.

version variant OCL editor OCL parser

OCL 2.0 extended SQUAM OCL Editor Galileo Eclipse MDT/OCL
OCL 2.1 extended SQUAM OCL Editor Helios Eclipse MDT/OCL
OCL 2.2 standard Dresden OCL 2.2 editor Dresden OCL 2.2 parser
tool webpage

Dresden OCL http://dresden-ocl.sourceforge.net/

SQUAM OCL Editor http://squam.info/ocleditor/

Eclipse MDT/OCL http://wiki.eclipse.org/MDT/OCL

6.2 Alternative Examples

As far as we know, our course is the only one focusing on model-independent expressions and
covering the semantics and newest methods introduced in OCL 2.2. However, there are other
valuable teaching resources we would like to mention here.

The well-known and most extensively used example in OCL teaching is the “Royal and
Loyal” system example introduced and used in OCL text books as in [WKO03]. The example
provides an extensive set of model-dependent OCL expressions for earlier versions of OCL (up
to 2.0). OCL expressions for this example are provided with several tools, among others with

Proc. EduSymp 2010 10/13

Ea ECEASST

Dresden OCL’, Eclipse MDT/OCL'?, and ITP/OCL'!.

Several OCL courses (scripts, slides, OCL expressions) are available from the OCL Portal'?.
They are provided by the following teachers (tools): Heinrich Humann, Birgit Demuth, Jurriaan
Hage (Dresden OCL), Lothar Schmitz (USE), and Joanna Chimiak—Opoka (OCLE). Addition-
ally, further examples of OCL expressions are provided by Martin Gogolla together with USE'?
and as teaching materials'* including UML and OCL in Conceptual Modeling'> and Exercises
for Teaching OCL Constraints'.

UML tools which support OCL typically also provide OCL examples for documentation or
evaluation such as Papyrus'’. Screencasts and videos can also be helpful to learn how to use
OCL in a development environment. MagicDraw UML'® and Borland Together'® provide such
online tutorials. For further references, we will constantly update the list of OCL software and
tutorials at the OCL Portal. At the same time we are looking for support of the OCL community
to add their knowledge to the portal.

Besides UML model examples, students can study OCL usage for models based on other
metamodels than UML, such as the Java metamodel, XSD (XML Schema), and EMF Ecore?’.

7 Conclusion

Teaching OCL is a challenging task because of an imprecise and incomplete standard specifi-
cation [OMG10]. This fact has, over the years, caused confusion about the nature of OCL and
differences in its semantics and implementations. As a result there is a resistance to teaching
and to learning this language. Our intention was to help to overcome this resistance by provid-
ing a solid course on the core part of OCL. We provided instructions for teachers and learning
materials which include OCL expressions tested with OCL tools developed at our universities.

The course presented in this paper is the first part of a larger OCL course we plan to provide. It
will be integrated into and distributed with our OCL tools to give users a comprehensive example
set of them. The second part of the planned OCL course will present examples how to specify
business rules by OCL constraints on the model layer. OCL constraints for the specification of
well-formed rules on the metamodel layer as well as model queries will be subject of the third
part of the planned course. Additionally, we plan to adapt OCL expressions to be usable as a
benchmark extending [GKBOS8] with new methods introduced in OCL 2.2 and the four—valued
logic.

9 http://dresden-ocl.sourceforge.net/4eclipse_usage.html

10 http://wiki.eclipse.org/MDT/OCL/FAQ

T http://maude.sip.ucm.es/itp/ocl/examples.html

12 http://st.inf tu-dresden.de/oclportal/ Courses

13 http://www.db.informatik.uni-bremen.de/projects/use/use-documentation. pdf

4 http://www.db.informatik.uni-bremen.de/teaching/courses/ss2010_eis/

15 http://www.db.informatik.uni-bremen.de/teaching/courses/ss2010_eis/bookConceptualModelling. pdf
16 hitp://www.iem.pw.edu.pl/edusymp08/M.Gogolla_ocl.pdf

17 http://www.papyrusuml.org

18 http://www.magicdraw.com/files/viewlets/MD_viewlets_Validation_viewlet_swf.html

19 http://www.borland.com/de/products/together/

20 hitp://dresden-ocl.svn.sourceforge.net/viewvc/dresden-ocl/trunk/ocl20forEclipse/doc/pdf/manual.pdf, p. 112

11/13 Volume 34 (2010)

Teaching OCL Standard Library Eﬁ

Acknowledgements: The research herein is partially conducted within the competence net-
work Softnet Austria (www.soft-net.at) and funded by the Austrian Federal Ministry of Eco-
nomics (bm:wa), the province of Styria, the Steirische Wirtschaftsfoerderungsgesellschaft mbH.
(SFG), and the city of Vienna in terms of the center for innovation and technology (ZIT).

We would like to thank our colleagues for their support in conceptual and technical aspects of
our teaching project, especially Colin Atkinson, Hannes Mosl, Claas Wilke, and Kevin Church.

Bibliography

[AckO1] J. Ackermann. Fallstudie zur Spezifikation von Fachkomponenten. In Turowski
(ed.), 2. Workshop Modellierung und Spezifikation von Fachkomponenten. Pp. 1-66.
Bamberg, Deutschland, 2001. (In German).

[Amb04] S. Ambler. The Object Primer Third Edition Agile Model-Driven Development with
UML 2.0. Cambridge, Cambridge, UK, 2004.

[AZHO8] D. Akehurst, S. Zschaler, G. Howells. OCL: Modularising the Language. In Pro-
ceedings of the Workshop Ocl4All: Workshop at MoDELS 2007. Volume 9. Elec-
tronic Communications of the EASST, 2008.
http://www.easst.org/eceasst

[BGH'09] F. Biittner, M. Gogolla, L. Hamann, M. Kuhlmann, A. Lindow. On Better Under-
standing OCL Collections or An OCL Ordered Set Is Not an OCL Set. Pp. 276-290
in [Ghol0].

[BKWO09] A. D. Brucker, M. P. Krieger, B. Wolff. Extending OCL with Null-References.
Pp. 261-275 in [Ghol10].

[CCG109] J. Cabot, J. Chimiak-Opoka, M. Gogolla, F. Jouault, A. Knapp.
Ninth International Workshop on the Pragmatics of OCL and Other Textual
Specification Languages. Pp. 256-260 in [Gho10].

[CDSRO9] J. Chimiak-Opoka, @ B. Demuth, D. Silingas, N. F. Rouquette.
Requirements Analysis for an Integrated OCL Development Environment.
Electronic Communications of the EASST: The Pragmatics of OCL and Other
Textual Specification Languages 2009 24, 2009. (presented at OCL Workshop).

[CO09] J. Chimiak-Opoka. OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the Ob-
ject Constraint Language. In Schuerr and Selic (eds.), Model Driven Engineer-
ing Languages and Systems, 12th International Conference, MODELS 2009, Den-
ver, Colorado, USA, October 4-9, 2009, Proceedings. LNCS 5795. Pp. 665-669.
Springer Verlag, 2009. (slides).

[CWOO07] A. L. Correa, C. Werner, M. de Oliveira Barros. An Empirical Study of the Impact
of OCL Smells and Refactorings on the Understandability of OCL Specifications. In

Proc. EduSymp 2010 12/13

ECEASST

[Ghol0]

[GKBO8]

[MC99]

[MRO9]

[OMGO09]

[OMG10]

[Ric02]

[SCC10]

[VJOO]

[WKO3]

Engels et al. (eds.), MoDELS. Lecture Notes in Computer Science 4735, pp. 76-90.
Springer, 2007.

S. Ghosh (ed.). Models in Software Engineering, Workshops and Symposia at MOD-
ELS 2009, Denver, CO, USA, October 4-9, 2009, Reports and Revised Selected Pa-
pers. Lecture Notes in Computer Science 6002. Springer, 2010.

M. Gogolla, M. Kuhlmann, F. Biittner. A Benchmark for OCL Engine Accuracy,
Determinateness, and Efficiency. In MoDELS ’08: Proceedings of the 11th interna-
tional conference on Model Driven Engineering Languages and Systems. Pp. 446—
459. Springer-Verlag, Berlin, Heidelberg, 2008.

L. Mandel, M. V. Cengarle. On the Expressive Power of OCL. In Wing et al. (eds.),
World Congress on Formal Methods. Lecture Notes in Computer Science 1708,
pp- 854-874. Springer, 1999.

S. Moisan, J.-P. Rigault. Teaching Object—Oriented Modeling and UML to Various
Audiences. Pp. 40-54 in [Gho10].

OMG. OMG Unified Modeling LanguageTM (OMG UML), Superstructure. version
2.2. February 2009. http://www.omg.org/spec/UML/2.2/Superstructure/PDF.

OMG. Object Constraint Language. OMG Available Specification. Version 2.2. Feb.
2010.

M. Richters. A Precise Approach to Validating UML Models and OCL Constraints.
PhD thesis, Universitit Bremen, 2002. BISS Monographs No. 14.

A. Sterritt, S. Clarke, V. Cahill. Precise Specification of Design Pattern Structure
and Behaviour. In Kuehne et al. (eds.), Modelling Foundations and Applications,
6th European Conference, ECMFA 2010. LNCS 6138. Springer, 2010.

M. Vaziri, D. Jackson. Some Shortcomings of OCL, the Object Constraint Language
of UML. In Li et al. (eds.), TOOLS (34). Pp. 555-562. IEEE Computer Society,
December 2000. http://dblp.uni-trier.de/db/conf/tools/tools34-2000.html#VaziriJ0O.

J. Warmer, A. Kleppe. The Object Constraint Language: Getting Your Models Ready
for MDA, Second Edition. Addison-Wesley, 2003.

13/13

Volume 34 (2010)

