Electronic Communications of the EASST

Volume 45 (2011)

Proceedings of the
Fourth International Workshop on Formal Methods
for Interactive Systems
(FMIS 2011)

Formal Modeling and Analysis for Interactive Hybrid Systems
Ellen J. Bass, Karen M. Feigh, Elsa Gunter, and John Rushby

16 pages

Guest Editors: Judy Bowen, Steve Reeves

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Formal Modeling and Analysis for Interactive Hybrid Systems

Ellen J. Bass', Karen M. Feigh’, Elsa Gunter’, and John Rushby**

!'Systems and Information Engineering, University of Virginia
2School of Aerospace Engineering, Georgia Institute of Technology
3Department of Computer Science, University of Illinois, Urbana-Champaign
4Computer Science Laboratory, SRI International, Menlo Park, California

Abstract: An effective strategy for discovering certain kinds of automation surprise
and other problems in interactive systems is to build models of the participating
(automated and human) agents and then explore all reachable states of the composed
system looking for divergences between mental states and those of the automation.
Various kinds of model checking provide ways to automate this approach when
the agents can be modeled as discrete automata. But when some of the agents are
continuous dynamical systems (e.g., airplanes), the composed model is a hybrid (i.e.,
mixed continuous and discrete) system and these are notoriously hard to analyze.

We describe an approach for very abstract modeling of hybrid systems using rela-
tional approximations and their automated analysis using infinite bounded model
checking supported by an SMT solver. When counterexamples are found, we de-
scribe how additional constraints can be supplied to direct counterexamples toward
plausible scenarios that can be confirmed in high-fidelity simulation. The approach
is illustrated though application to a known (and now corrected) human-automation
interaction problem in Airbus aircraft.

Keywords: Hybrid systems, infinite bounded model checking, SMT solvers, mental
models, automation surprise

1 Introduction

New air traffic control procedures (collectively known as NextGen) involve automated exchange
of information, intentions, and instructions among aircraft and between aircraft and the ground.
These procedures raise new issues in situational awareness, autonomy, authority, and control
among pilots, ground controllers, and automated systems in the cockpit and on the ground.

We participate in a project called “NextGen Authority and Autonomy” (NextGenAA) to ex-
plore human-automation interaction issues in these procedures using formal methods and sim-
ulation [BBF"11]. The ultimate goal is to provide assurance that a given procedure harbors no
potential for an “automation surprise” [SWB97] or other anomaly, but along the way we will be
interested to discover scenarios that may indicate such potential and to subject them to particular
scrutiny.

* Supported by NSF grant CNS-0720908 and by NASA contract NNA10DE79C. The content is solely the responsi-
bility of the authors and does not necessarily represent the official views of NSF or NASA.

1/16 Volume 45 (2011)

Formal Modeling and Analysis for Interactive Hybrid Systems E}

Our approach to assurance is to develop models of the human and automated actors in these
procedures, together with the aircraft they control or the air traffic automation they are using, and
to search for anomalous scenarios, such as those that exhibit an automation surprise—which will
be manifested as a divergence between the state of the mental model of one of the human actors
and the real state of the physical system (or the mental state of another actor) [Rus02]. If such
anomalies are found, then our models should enable us to find the root cause and to revise the
associated procedure—or its supporting automation or training, as appropriate. If no anomalies
are discovered, and we can show that our search is exhaustive, then we have delivered assurance
for absence of anomalies in the procedures examined, subject to caveats about the soundness of
our models and methods of analysis.

Many of our models will be state machines, for which several effective methods of automated
analysis (i.e., search) are available: these methods use various techniques from automated de-
duction, such as model checking and theorem proving. State machines are suitable models for
automated systems, and for some aspects of human behavior. However, we must also model the
behavior of physical “plant,” such as aircraft in flight. High fidelity aircraft models use differen-
tial equations that accurately represent the flight dynamics of a given aircraft. An aircraft may
operate in different “modes” (e.g., flaps retracted or extended), and there will be different sets
of differential equations for each mode: aircraft models are therefore hybrid systems (i.e., they
combine discrete and continuous elements) and these pose challenges for analysis, especially
when composed with models for the other actors.

A straightforward method for analyzing hybrid systems is simulation (e.g., using Matlab
Simulink/Stateflow). Simulations can be very accurate, but they are computationally expensive
and therefore of limited utility in a search for anomalous scenarios: the computational cost will
restrict the search to a small number of scenarios and some anomalous ones may be overlooked.
There are formal methods for exploring the reachable states of hybrid systems, and for verifying
invariants, but these also are computationally challenging and can seldom handle models with
more than five continuous variables.

The properties of some hybrid systems do depend crucially on the differential equations in-
volved; control systems are like this, because the controller is highly tuned to the behavior (mod-
eled by differential equations) of the controlled plant. But properties of other kinds of hybrid sys-
tem are less dependent on the differential equations: human-automation interaction must surely
be of this latter kind, because the human can employ only a fairly crude mental simulation of the
dynamics involved. What we seek is a method of modeling and analysis for hybrid systems that
is commensurate with this second kind of system.

Our approach is to use a range of models: we start with very abstract (i.e., highly approximate)
models for aircraft dynamics that can be analyzed efficiently using a method known as “infinite
bounded model checking.” If anomalies are discovered, then we must decide whether these are
due to the approximations employed, or are real. We attempt to do this by refining and manip-
ulating the approximate model so that it delivers an anomalous scenario that appears credible;
we then use this scenario to guide a limited search in a simulator to see if a similar anomalous
scenario can be created in high fidelity.

The purpose of this paper is to describe and explain the models and the analysis techniques
that we employ at the most abstracted end of our range of methods. We illustrate our techniques
using a known automation surprise found in certain Airbus aircraft. Although this example does

Proc. FMIS 2011 2/16

Eg ECEASST

not concern air traffic operations, it does employ similar components: human mental models,
automated systems, and aircraft dynamics. We use this example because we have analyzed it
previously [CJROO0] and can illustrate the difference between earlier methods and those developed
here.

The automation surprise that is the basis for our example is described in the following section;
our method for abstract modeling and analysis is described in Section 3 and its application to the
example is described in detail in Section 4; we present our conclusions in Section 5.

2 An Example Scenario: A320 Speed Protection

Our example focuses on a form of “speed protection” built in to various Airbus aircraft, and the
potential it provides for an automation surprise. The specific protection that we model is an older
form that was installed by default in A320, A330, and A340 aircraft and, in a somewhat similar
form, in A310s. Due to automation surprise incidents, this protection is modified in the “global
speed protection package” offered today. To see why, we recommend viewing the following
video of an incident that occurred on 24 September 1994 to an Airbus A310, registration YR-
LCC, operating as Tarom Flight 381 from Bucharest to Paris Orly: http://www.youtube.com/
watch?v=VgmrRFeYzBI. The first part of the video is a reconstruction of the incident, based
on information from the flight data recorder; the second part is actual video taken from the
ground. The sound track from the voice data recorder is synchronized to both parts. The official
incident report is available from the French authorities [BEA94]. In the following paragraphs,
we adumbrate relevant parts of the automation employed in the A320 and describe a scenario
that could provoke an automation surprise and an incident such as that on Tarom Flight 381.

Our automation model is based on the implementation used in A320 aircraft, as described
in [CJROO]. The A320 autopilot has several vertical modes and submodes, of which we are
interested in V/S FPA (the Flight Path Angle submode of Vertical Speed mode), OP DES (the
Descent submode of Open mode), and OP CLB (the Climb submode of Open mode). V/S FPA
flies at a specific flight path angle whose value is set in the Flight Control Unit (FCU). The
autothrottle also has several modes, of which we focus on the behavior in SPD (Speed mode),
which tries to maintain a specific airspeed whose value also is set in the FCU. If the aircraft
is descending steeply, it is possible that its airspeed will exceed that requested, even when the
autothrottle has selected idle thrust. In this case, FPA is prioritized over airspeed and the latter is
allowed to exceed the speed set in the FCU. However, the airspeed may become sufficiently large
that it exceeds the maximum safe speed, which depends on the aircraft configuration (specifically,
whether the flaps are extended or not).

In this case, automated speed protection changes the vertical mode from V/S FPA to OP
DES or OP CLB, which prioritize airspeed over vertical speed. The selected mode depends on
whether the “target altitude” set in the FCU is above or below the aircraft’s current altitude.
During descent, the target altitude is generally set by the crew to the missed-approach altitude, in
case a go-around is needed. If speed protection causes mode reversion when the plane is below
this altitude, the new mode will be OP CLB (open climb), which will cause the plane to climb
towards the altitude set in the FCU. The climb is performed at maximum thrust, using a flight
path angle that will maintain the set airspeed.

3/16 Volume 45 (2011)

http://www.youtube.com/watch?v=VqmrRFeYzBI
http://www.youtube.com/watch?v=VqmrRFeYzBI

Formal Modeling and Analysis for Interactive Hybrid Systems E}

This mode change is likely to occasion an automation surprise, as the mental state of the pilots
will be “descent and landing” and they will not be expecting the aircraft suddenly to reverse
direction from gradual descent to a strong climb. The response to such a surprise will depend on
the training and performance of the crew. In the case of Flight 381, the pilots disconnected the
autopilot but left the autothrottle engaged, which continued to command high thrust; they then
(apparently inadvertently) commanded maximum upward pitch trim, which they countered with
down elevator. When they relaxed the down elevator, the aircraft was massively out of trim and
pitched violently upwards and stalled. Due to this and several similar incidents, Airbus modified
speed protection so that the aircraft stays in V/S FPA mode, but adjusts its flight path angle to
remain below the maximum permitted speed.

3 Formal Modeling Issues

One approach to formal analysis of human-automation interaction issues builds on the propo-
sition that human interaction with machines is guided by a mental model of the device con-
cerned [JL83]. The nature of the model is subject to debate: some authors posit stimulus-
response rules, while others argue for a state machine or a similar representation that supports
mental simulation of the device. Our view is that a device or system will not be useable un-
less interaction with it can be guided by some simple representation. We use state machines
as our representation and study the interaction of such a “mental model” with a state machine
model of the actual system; the hypothesis of [Rus02] is that significant divergences between the
models indicate potential automation surprises, and a model checker can be used to detect such
divergences and to construct scenarios that manifest them.

Now, how can we develop the state machine for a mental model? We are not seeking to develop
or validate psychological insight, so we do not attempt to discover the models employed by
individual human operators; rather, we suppose that the system developer explicitly or implicitly
designs the system so that it can be operated with the aid of a relatively simple model, and part
of the purpose of the system training manuals is to communicate that model. Javaux [Jav98]
suggests that training induces fairly detailed and precise state machine models, which are then
simplified through experience and forgetfulness. He proposes (and has validated) two specific
processes: frequential simplification causes rarely taken transitions, or rarely encountered guards
on transitions, to be forgotten, while inferential simplification causes transition rules that are
“similar” to one another to be merged into a single prototypical rule that blurs their differences.

Plausible mental models could conceivably be constructed mechanically using Javaux’ in-
sights: extract the state machine implied by the training manuals, then iteratively apply the two
simplification rules until a fixed point is obtained. However, our previous examples, [Rus02]
(MD-88), [CJR00] (A320), and [Rus00] (737) use very crude mental models that represent lit-
tle more than plausible expectations about vertical direction (i.e., whether the pilot expects the
aircraft to climb or to descend), and the representation of the aircraft automation is also highly
abstracted. A divergence is considered to occur when the vertical direction of the mental model
is opposite to that commanded by the automation.

A valid objection to the modeling used in these examples is that no aircraft is present! An
automation surprise is modeled as a divergence between the state of the mental model and that of

Proc. FMIS 2011 4/16

Eg ECEASST

the automation but, in reality, the state of the automation is not always known to the pilot (that is
often the root cause of the automation surprise); a true automation surprise is surely a divergence
between the state of the mental model and the actual behavior of the aircraft—as observed via
its instruments or through the seat of the pants.

To model and analyze this more realistic interpretation, we need to introduce the dynamics
of the aircraft, and the ways in which these are controlled by the automation. As noted earlier,
this takes us into the realm of hybrid systems where, despite much impressive research, the
problems of model checking and verification remain computationally formidable. Our approach
is to remain very abstract (i.e., approximate) but to introduce “just enough” modeling of the
dynamics that we are able to detect anomalies very efficiently and can generate scenarios that
may be used to guide high-fidelity simulations.

For the A320 speed protection example, we need to model how the thrust and pitch values
computed by the control laws of the autothrottle and autopilot, and the flap setting commanded
by the pilots, determine the trajectory of the airplane. We are interested only in the vertical
dimension, so we focus on altitude and airspeed and the derivatives of these. Now it might seem
that we need differential equations to model these attributes—and indeed, we do for full fidelity.
But for our purposes, something much cruder suffices: we can ignore the metric element of time
and simply assert relationships among the continuous state variables “now” and those in any
future state, provided the airplane stays in the same discrete mode. For example, if the pitch
angle is positive, we can assert that the altitude any time in the future will be greater than it is
now, provided there is no change in discrete parameters (such as the flaps setting, or the pitch
angle itself).

There is, in fact, a very strong and sound new method for analysis of hybrid systems based
on relational abstractions of this type [ST11]. The difference between that approach and ours
is that sound relational abstractions are calculated from a hybrid system model by specialized
invariant generation, whereas we simply assert a relation as our model. We claim that this is
sufficient for our purposes: provided our relations are conservative (i.e., admit more behaviors
than would an accurate model), we are certain to discover anomalies if they exist. Of course,
we may discover spurious anomalies if our modeling is too approximate. What we will do is
construct very approximate models to begin with, then, if we discover an interestingly anomalous
scenario (e.g., one in which the pilot’s mental mode is “descend” but airplane is climbing), we
can refine the model until the scenario becomes realistic or is found to dissolve as an artifact of
excessive approximation. Once we have developed a realistic scenario with the model checker,
we will attempt to reproduce it in a high-fidelity simulation.

Relational approximations allow us to eliminate derivatives and differential equations but we
must still consider how to represent the relations in a form that a model checker can accept and
analyze. Model checkers differ greatly in the ways models may be specified, and in the kinds
of analysis they support. Some model checkers employ a modeling language similar, or even
identical, to a programming language, while others provide a more abstract notation. Among the
latter, “guarded commands” are a popular choice. These consist of a series of commands of the
following form

guard —--> var = expression

where the guard is some predicate over the state variables, var is one of the state variables,

5/16 Volume 45 (2011)

Formal Modeling and Analysis for Interactive Hybrid Systems E}

and expression is some expression over the state variables. The interpretation is that in a
state where the guard evaluates to true, the state variable var can be updated to the result
of evaluating expression in that state. It usually is possible to have multiple assignments,
so that several state variables can be updated atomically. If more than one guard evaluates to
true, then one is chosen nondeterministically. Most model checkers also allow nondeterministic
assignment so that a set of expressions may appear on the right, and one is chosen nondetermin-
istically. It is sometimes useful if the value newly assigned to one state variable can be used in
the expression assigned to a second. Primes are often used for this purpose, so that the example
above would become

guard —--> var’ = expression

and primed variables may then appear in the expression (some analysis may be necessary to
eliminate circular dependencies). Some model checkers further allow primed variables to appear
in the guard.

With this background, we now describe three methods for specifying relational models. To
make it concrete, we suppose we are trying to specify a model in which altitude must increase
when pitch angle is positive, and we will use the concrete syntax of the SAL suite of model
checkers from SRI [SAL]. Our first method is the following.

pitch > 0 ——> altitude’ IN {x | x > altitude} LJ_4

Here pitch and altitude are state variables of some numeric type; the IN construct is SAL’s
notation for nondeterministic assignment, and the relation appears directly within this construct:
it says that the new value of altitude is chosen nondeterministically from those values greater
than its current value.

A second method is the following.

pitch > 0 AND (altitude’ > altitude) —--> altitude’ IN {x | TRUE} L2_4

Here, the assignment is totally nondeterministic and the relation appears in the guard. Many
model checkers do not allow primed variables in the guards and so they cannot support this
method.

The third method employs a synchronous observer. This is a separate model, synchronously
composed with the first, that observes the state of the system and sets a new Boolean state
variable ok to FALSE when it observes a violation of the relational constraint. For our simple
example, the basic model will use a totally nondeterministic assignment

| pitch > 0 --> altitude’ IN {x | TRUE} [3]

and the observer will enforce the relation as follows.

’NOT (altitude’ > altitude) —--> ok’ = FALSE 4

When we run the model checker, we will instruct it to consider only those runs where ok is true.
For example, when model checking for some invariant property prop, we will use a specification
of the following form, where G (sometimes written [J) is the always modality of Linear Temporal
Logic (LTL).!

' A model checker using Computation Tree Logic (CTL) would use AG in place of G.

Proc. FMIS 2011 6/16

Eg ECEASST

’G(ok IMPLIES prop)

While the first method seems the most attractive in this simple example, it does not extend to
the case where assignments are made to several state variables and the new values must satisfy
some joint relation (e.g., assign to x and y such that xxx + y*y < 1). The second method
can deal with this case but, as already noted, many model checkers do not allow primed variables
in the guards. Hence, for widest applicability, we will employ the third method; we will see later
that use of a synchronous observer also makes it easy to refine the relation (by simply adding
more constraints). Primed variables in the guards of a synchronous observer can be eliminated,
if necessary, by introducing additional variables to store the previous values of the state variables
concerned (so the model operates on values delayed by one time unit: “previous” and “now,”
rather than “now” and “next.”)

We now turn to the representation of numerical values for quantities such as altitude
and pitch. A crude approximation simply uses a discrete enumeration to represent ranges of
numeric values (e.g., 1ow, medium, and high for altitude). However, most modern model
checkers directly support the use of bounded integers (e.g., in the range -32,786 to 32,767) by
encoding them as bitvectors. Model checking is accomplished by translating the model to a
purely Boolean representation that is analyzed by a BDD or SAT engine, so operations such as
addition are performed by compiling the representation for a binary adder into the translation
sent to the backend engine.”

The bitvector representation is adequate for many examples, but it is computationally expen-
sive so that models with many numerical state variables can become difficult to analyze. Fur-
thermore, the “natural” representation for quantities such as pitch and altitude is surely as real
numbers, by which we mean the mathematical notion of real numbers, not approximations such
as floating point.> Fortunately, there is a technology that supports this representation, and also
mathematical (i.e., unbounded) integers; this is the technology of “infinite bounded model check-
ing” [MRSO02]. In its basic form, Bounded Model Checking (BMC) takes a finite state model of a
system, a putative invariant for the system (i.e., a property that should be true in all its reachable
states), and a natural number k, and determines whether there is a counterexample to the prop-
erty of length & steps or less. The finite state model is translated to a Boolean representation and
“unrolled” k times, the property is likewise represented in Boolean form, and these two Boolean
representations are combined to pose a problem that can be solved by a propositional satisfia-
bility (SAT) solver: BMC can be extended from refutation (i.e., bug-finding) to verification by
slightly reformulating the underlying SAT problem so that it performs k-induction [MRSO03].

SAT solving can be generalized from the purely propositional case to Satisfiability Modulo
Theories (SMT), which supports several useful theories, including the real numbers, mathemat-
ical (i.e., unbounded) integers, and uninterpreted functions [Rus06]. BMC and k-induction can
then be reformulated to target the capabilities of SMT solvers; this is referred to as infinite BMC,
because it operates over potentially infinite state spaces, such as those involving real numbers.
In additional to supporting more realistic models, infinite BMC over reals and integers is often

2 The different traditions and technologies that contribute to model checking use different terms for the same
notions—bitvectors, and binary, Boolean or propositional representations—they are all equivalent for our purposes.
3 Cockpit instruments may display altitude in terms of integer feet, or flight level, but the underlying physical
parameter—the actual height of the airplane above the ground—is a real-valued quantity.

7/16 Volume 45 (2011)

Formal Modeling and Analysis for Interactive Hybrid Systems E}

faster than ordinary BMC using bitvector representations for bounded integers.

SMT solvers, and hence infinite BMC, allow the use of uninterpreted functions: these are
functions about which nothing is known, save what is supplied via axioms. The attraction here is
that the totally nondeterministic assignment in | 3 | can be replaced by one that indicates the state
variables on which this assignment should depend. This does not change the reachable states
of the model (those are determined by the relational constraint enforced by the synchronous
observer of) but it conveys more of the intuition behind the model, and this can help in
communicating with those who develop the more detailed simulation models. Specifically, we
can introduce an uninterpreted relation (which can be thought of as an uninterpreted higher-order
function that returns a set of values) ad (standing for altitude dynamics) that takes an altitude
and a pitch angle and returns the set of possible new altitudes. This relation would be defined in
SAL like this

’ ad(alt: REAL, pitch: REAL): [REAL -> BOOLEAN]

(so that ad (x, y) (z) is TRUE if z is among the possible new altitudes when the current
altitude and pitch are x and y, respectively) and the guarded command of | 3 | can then be written
as follows.

’pitch > 0 ——> altitude’ IN ad(altitude, pitch)

Now that we have introduced our approach to relational modeling of interactive hybrid sys-
tems, and methods for representing and analyzing these with a model checker, we are ready to
illustrate the approach using the A320 speed protection example introduced previously; this is
the topic of the following section.

4 Example: Formal Analysis for A320 Speed Protection

The behavior of the A320 and its speed protection system, as described in section 2, emerges
from the interaction of several separate components: the pilots and the devices they manipulate
(FCU, sidestick etc.), the autopilot and autothrottle, the engines, and the dynamics of the aircraft.
Since the purpose of this example is illustration, we will omit many details and lump some of
the components together: in particular, we will combine the autopilot and autothrottle into one
component called aut omat ion, we will combine all aspects of human-automation interaction
into a component called pilots, and we will combine the dynamics of the aircraft with its
engines into another component called airplane. As we are interested only in the behavior
of the aircraft in the vertical direction, we model just its altitude and airspeed, and ignore its
heading and horizontal position.

We first outline each of the three lumped component models, then present their actual speci-
fication. We begin with the automation. This is a fairly conventional state machine: it takes
as inputs various controls and values set by the pilots (desired vertical mode, FCU altitude
and flight path angle, flap setting) and the current state of the airplane (its airspeed and altitude),
determines the actual vertical mode to be used (which may be different than that desired by the
pilots if a protection is being applied), and applies control laws to determine the thrust and

Proc. FMIS 2011 8/16

Eg ECEASST

pitch settings to be used by the ai rplane. Notice that thrust and pitch are modeled as param-
eters to internal communications from automation to airplane; they are not observed by
the pilots directly.

The pilots take the state of the airplane (airspeed and altitude) as inputs (given by instru-
ments and, presumably, their own kinesthetics), and perform various actions such as dialing
values for altitude and flight path angle into the FCU, setting the desired vertical mode, and ex-
tending or retracting the flaps. They perform these actions in the context of a “mental mode”
(descending, climbing, level flight) that provides coherence: for example, they will not extend
the flaps when the mental mode is “climbing.” This behavior can be modeled by a conventional
state machine.

The airplane takes as input the thrust and pitch values computed by the control laws of
the automation, and the flap setting commanded by the pilots, and simulates the aircraft
dynamics to calculate its trajectory through space, of which we model only altitude and airspeed.

Having described the general approach, we now present the example concretely using the
notation of SAL.

a320sp: CONTEXT =
BEGIN

flap_config: TYPE = {retracted, extended};
vertical_mode: TYPE = {vs_fpa, op_clb, op_des, other};
mental_modes: TYPE = {climb, descend, level};

speedvals: TYPE = {x: REAL | x >= 0 AND x < 700};
altvals: TYPE = {x: REAL | x >= 0 AND x < 43000};
thrustvals: TYPE = {x: REAL | x >= 0 AND x <= 100};
pitchvals: TYPE = {x: REAL | x >= -9 AND x <= 30};
VMAX: speedvals = 400; Vfe: speedvals = 180;

The specification begins with its name a320sp (“sp” for speed protection) and is kept in
a file named a320sp.sal. Next, we introduce types for some of the state variables. First,
flap_configisanenumerated type used to specify flap configurations (we abstract all degrees
of extension into the single value extended), then vertical_mode enumerates the various
modes of the aut omat ion: we focus on vs_fpa (V/S FPA), op_c1b (OP CLB) and op_des
(OP DES), and abstract all others into other. The mental _modes of the pilots are also
enumerated here. Next, we introduce the types that will represent airspeeds, altitudes, thrust
settings, and pitch: these are modeled as suitable subranges of the real numbers. We also specify
constants for the maximum speeds permitted for the airplane: Vfe is the maximum when
the flaps are extended, and VMAX when they are retracted. These and other numeric constants
appearing in the specification were chosen somewhat arbitrarily: we do not know the true values.

Then we introduce the uninterpreted functions (they are actually relations but, as noted before,
SAL models these as higher-order functions whose range type is a predicate) that describe the
dynamics of the airplane: there are two pairs of functions, one giving the airspeed dynamics, the
other the altitude, each in two variants, depending on whether the flaps are extended or retracted
(i.e., the wing is “clean”). These functions take the current airplane airspeed, altitude,
engine thrust, and pitch angle and deliver sets (modeled as predicates—i.e., functions with

9/16 Volume 45 (2011)

Formal Modeling and Analysis for Interactive Hybrid Systems

range type BOOLEAN) of airspeed or altitude as appropriate. To avoid cluttering the

page, we replace function arguments with . . . after the first.
speed_dynamics_clean (airspeed: speedvals, altitude: altvals,
thrust: thrustvals, pitch: pitchvals): [speedvals -> BOOLEAN];
alt_dynamics_clean(...): [altvals —> BOOLEAN];
speed_dynamics_flaps(...): [speedvals —-> BOOLEAN];
alt_dynamics_flaps(...): [altvals —-> BOOLEAN];

Next, we introduce uninterpreted functions that represent the control laws applied by the
automation. These also are specified in pairs: one member of each pair computes the engine
thrust to be applied, the other the pitch angle to be flown. The functions take as arguments
the current airspeed, the flight path angle set in the FCU (fcu_fpa), the current altitude,
the target altitude set in the FCU (fcu_alt), the current pitch angle and the f1aps setting.
There is a separate pair of control law functions for each mode of the automation: vs_fpa,
op-clb, and op_des. To save space, we omit the thrust control law functions.

vs_fpa_pitch_law(airspeed: speedvals, fcu_fpa: pitchvals,
altitude: altvals, fcu_alt: altvals, pitch: pitchvals,

flaps: flap_config): [pitchvals -> BOOLEAN];
op_clb_pitch_law(...): [pitchvals —-> BOOLEAN];
op_des_pitch_law(...): [pitchvals —> BOOLEAN];

Now we can specify the aut omat ion as a state machine. This takes the current f1aps set-
ting, fcu_alt, fcu_fpa, and fcu_mode (all set by the pilots), and the current airspeed
and altitude (set by the airplane), and outputs the thrust and pitch angle settings,
and also the actual_mode whose control laws it is applying.

automation: MODULE =

BEGIN
INPUT
flaps: flap_config, fcu_alt: altvals, fcu_fpa: pitchvals,
fcu_mode: vertical_mode, airspeed: speedvals, altitude: altvals
OUTPUT
thrust: thrustvals, pitch: pitchvals,
actual_mode: vertical_mode, max_speed: speedvals
INITIALIZATION
actual_mode = fcu_mode
DEFINITION

max_speed = IF flaps = retracted THEN VMAX ELSE Vfe ENDIF;
TRANSITION

[track—-fcu-mode: fcu_mode’ /= fcu_mode —--> actual_mode’ = fcu_mode’
[] mode_reversion: actual_mode = vs_fpa AND airspeed > max_speed —-->
actual_mode’ = IF fcu_alt > altitude THEN op_clb ELSE op_des ENDIF;

[] vs_fpa_mode: actual_mode = vs_fpa AND airspeed <= max_speed ——>
pitch’ IN vs_fpa_pitch_law(...)

[] op_clb_mode: actual_mode = op_clb --> pitch’ IN op_clb_pitch_law(...)

[] op_des_mode: actual_mode = op_des ——> pitch’ IN op_des_pitch_law(...)

[] automation_idles: ELSE —--—>

] END;

Proc. FMIS 2011 10/16

E} ECEASST

The guarded commands appearing in the TRANSITION section and separated by [] symbols
specify the behavior of the state machine: each command has a label (whose only purpose is
to provide identifying information in counterexamples) followed by a colon, then the guard (a
Boolean expression), then an arrow (——>) followed by a series of assignments. At each step,
some true guard is selected (the ELSE guard will be true if none of the others are) and the
corresponding assignments are executed atomically.

Recall that primed names represent the value of the state variable in the “new” state while
unprimed values represent the “old” value, and notice that primed names can appear in guards
and on the right side of assignments. Thus, the guard of the command track_fcu_-mode is
true when the pilots have changed the setting of fcu_mode, and the result of the assignment
is to set the actual_mode equal to the new value of the fcu_mode.

The guard of the command mode_reversion is true when the actual mode is vs_fpa
and the airspeed exceeds the current maximum. The result of the corresponding assignment
is to set the actual_mode to op_clb or op_des as appropriate. The remaining guarded
commands simply apply the control laws of the current actual_mode. To save space, we omit
all assignments to the thrust variable (these would be modeled as application of the thrust
control laws of the autothrottle).

Next, we specify the behavior of the pilots. Essentially, this is a nondeterministic choice
among extending or retracting the flaps (only when the mental_mode is descend or climb,
respectively), dialing a (nondeterministic) value into fcu_alt, switching the mental mode to
descend or climb, or doing nothing. When the mental _mode switches to descend or
climb, the fcu_mode is set to vs_fpa and a nondeterministic negative or positive flight path
angle, respectively, is dialed into fcu_fpa.

pilots: MODULE =

BEGIN
OUTPUT
flaps: flap_config, fcu_alt: altvals, fcu_fpa: pitchvals,
fcu_mode: vertical_mode, mental_mode: mental_modes
INPUT
airspeed: speedvals, altitude: altvals
INITIALIZATION
mental_mode = level; fcu_mode = other; fcu_alt = 0; flaps = retracted;
TRANSITION
[extend_flaps: mental _mode = descend and flaps = retracted —-—>
flaps’ = extended
[] retract_flaps: mental_mode = climb and flaps = extended —-->
flaps’ = retracted

[] dial_fcu_alt: fcu mode = other --> fcu_alt’ IN {x: altvals | TRUE}
[] dial_descend: mental_mode /= descend —-—>
mental_mode’ = descend; fcu_mode’ = vs_fpa;
fcu_fpa’ IN {x: pitchvals | x < 0};
[] dial_climb: mental _mode /= climb —-->
mental_mode’ = climb; fcu_mode’ = vs_fpa;
fcu_fpa’ IN {x: pitchvals | x > 0};
[] pilots_idle: TRUE ——>
] END;

Next, we present the model of the airplane. This has two modes, depending on whether

11/16 Volume 45 (2011)

Formal Modeling and Analysis for Interactive Hybrid Systems

or not the flaps are extended, and simply applies the appropriate speed and altitude dynamics
to yield (nondeterministic) new values for its output variables airspeed and altitude. We
initialize these variables to values representative of the later stages of a descent.

airplane: MODULE =

BEGIN

INPUT

thrust: thrustvals, pitch: pitchvals, flaps: flap_config
OUTPUT

airspeed: speedvals, altitude: altvals

INITIALIZATION

airspeed = 200; altitude = 3000;
TRANSITION

[flying_clean: flaps = retracted ——>
airspeed’ IN
speed_dynamics_clean (airspeed, altitude, thrust, pitch);
altitude’ IN alt_dynamics_clean(...);
[] flying_flaps: flaps = extended —-->
airspeed’ IN speed_dynamics_flaps(...);
altitude’ IN alt_dynamics_flaps(...);
] END;

We now need to specify a constraints module that enforces suitable relationson alt itude
and airspeed (thereby giving more interpretation to the airplane model) and on thrust
and pitch (thereby giving more interpretation to the automation). This module will be a
synchronous observer that takes many of the state variables of the system as inputs, and sets a
variable ok to false whenever they violate the desired constraints. When we use model checking
to examine properties of interest, we will restrict attention to those scenarios in which ok is true.

constraints: MODULE =
BEGIN
OUTPUT
ok: BOOLEAN
INPUT
airspeed: speedvals, altitude: altvals,
thrust: thrustvals, pitch: pitchvals,
actual_mode: vertical_mode, flaps: flap_config,
fcu_alt: altvals, fcu_fpa: pitchvals,
fcu_mode: vertical_mode, mental_mode: mental_modes
INITIALIZATION
ok = TRUE;
TRANSITION
[actual_mode = op_des AND pitch > 0 —--> ok’ = FALSE;
[] actual_mode = op_clb AND pitch < 0 --> ok’ = FALSE;
[] actual_mode = vs_fpa AND fcu_fpa <= 0 AND pitch > 0 --> ok’ = FALSE;
[] actual_mode = vs_fpa AND fcu_fpa >= 0 AND pitch < 0 —--> ok’ = FALSE;
[] pitch > 0 AND altitude’ < altitude --> ok’ = FALSE;
[] pitch < 0 AND altitude’ > altitude --> ok’ = FALSE;
[] pitch=0 AND altitude’ = altitude --> ok’ = FALSE;
[] ELSE ——>
] END;

Proc. FMIS 2011 12/16

Eg ECEASST

The first guarded command ensures that when the actual_mode is op_des, thenthe pitch
angle is not positive (the guarded commands specify what is not allowed, so the constraints are
the negation of these); it is a constraint on the otherwise uninterpreted op_des pitch_law
of the automation. The next three guarded commands similarly add constraints to the other
control laws. The fourth guarded command ensures that the altitude increases when the pitch
angle is positive and the remaining commands deal with the cases of negative or zero pitch
angle; these three commands are constraints on the airplane model.

Finally, we can specify the property we wish to examine: that is, an automation surprise where
the mental mode of the pilots is descend butthe airplane is (strongly) climbing. We
specify this in another synchronous observer that raises (and latches) an alarm variable when
it sees a violation of the desired property: altitude’ - altitude > 0 indicates a climb
and we (somewhat arbitrarily) substitute 90 for O as the indication of a strong climb.

observer: MODULE =
BEGIN
OUTPUT
alarm: BOOLEAN
INPUT
mental_mode: mental_modes, altitude: altvals
INITIALIZATION
alarm = FALSE
TRANSITION
alarm’ = alarm OR (mental _mode = descend AND altitude’ - altitude > 90)
END;

We specify the sy stem as the synchronous composition of the five modules introduced above
(in this kind of composition, a step of the system comprises a step by each of its components).

system: MODULE = airplane || automation || pilots || constraints || observer;

Then we specify (as the theorem surprise) the invariant that the alarm is never raised,
provided the constraints are satisfied (i.e., ok is true); any counterexample to this invariant will
be an anomalous scenario that manifests an automation surprise.

’ surprise: THEOREM system |- G(ok IMPLIES NOT alarm); ‘

We use infinite BMC to examine this claim.

’sal—inf—bmc a320sp.sal surprise -v 3 —-it -d 20 ‘

This command names the claim surprise to be examined in the file a320sp. sal, sets the
verbosity level to 3, and instructs the model checker to iteratively increase the number of steps
in the examination from 1, 2, ... to a maximum depth of 20 (the default is 10).

The model checker discovers a violation of the property in five steps in a fraction of a second.
The scenario is summarized below (we use simple Unix scripts to format these tables from the
raw SAL output). The numbered rows give the values of the state variables (we abbreviate names
and omit several variables to save space) and the intervening unnumbered rows name the com-
mands of the airplane, automation, and pilots modules, respectively, that produced
the transition from the state above to the one below.

13/16 Volume 45 (2011)

Formal Modeling and Analysis for Interactive Hybrid Systems E}

(To conserve space, we omit the first step, in which fcu_alt issetby dial_fcu_alt.)

step | actmde | airspd | alt | fcu.alt | fcufpa | fcuumd | flaps | mx_spd | mntl.md | pitch

1 other 200 | 3000 | 3001 -1 other | rtrctd 400 level 0
Commands: flying_clean, track_fcu_md, dial_descend

2 vs_fpa \ 401 \ 3000 \ 3001 \ -2 \ vs_fpa \ rtretd \ 400 \ descend \ 0 ‘
Commands: flying_clean, mode_reversion, extend_flaps

3 op-clb \ 180 \ 3000 \ 3001 \ -2 \ vs_fpa \ extnd \ 180 \ descend \ 0 ‘
Commands: flying_flaps, op_clb_mode, pilots_idle

4 op-clb \ 0 \ 3000 \ 3001 \ -2 \ vs_fpa \ extnd \ 180 \ descend \ 1 ‘
Commands: flying_flaps, op_clb_mode, pilots_idle

5 op-clb \ 0 \ 3091 \ 3001 \ -2 \ vs_fpa \ extnd \ 180 \ descend \ 0 ‘

We see that a mode reversion has occurred, causing a climb while the mental mode is
descend, but it is caused by the airspeed abruptly increasing from 200 to 401 (thereby
exceeding VMAX). We observe some other unfortunate attributes in this counterexample: for
example, in steps 4 and 5 the airspeed decays to 0.

These abrupt changes in airspeed are contrary to our intuition, but consistent
with our specification because we have no constraints on the uninterpreted functions
speed_dynamics_clean and speed._dynamics_flaps that represent the dynamics of
this variable. SAL and its backend SMT solver Yices [SAL] find “simple” satisfying instan-
tiations for uninterpreted functions: there is nothing that requires these functions to be “contin-
uous,” so the solver just finds values for the points needed to construct the counterexample. We
need to add further constraints to our model and to refine some of those already present so that
they more accurately represent the dynamics.

[] airspeed’ > airspeed+10 OR airspeed’ < airspeed-10 --> ok’ = FALSE;
[] pitch > 0 AND altitude’ < altitude+10xpitch --> ok’ = FALSE;

[] pitch < 0 AND altitude’ > altitude+l10xpitch --> ok’ = FALSE;

[] pitch=0 AND

(altitude’ > altitude+10 OR altitude’ < altitude-10) --> ok’ = FALSE;

The first of these guarded commands is a new rule that requires airspeed to change by no
more than 10 between steps. The next three commands are refinements of those already present:
they couple altitude more tightly to pitch. With these adjustments to the constraints
module, we invoke the model checker again, and receive the following counterexample.

step | act.mde | airspd | alt | fcu_alt | fcufpa | fcuumd | flaps | mx_spd | mntl.md | pitch

1 other 200 | 3000 | 3291 -1/50 other | rtrctd 400 level -1/100
Commands: flying_clean, track_fcu_md, dial_descend
2 | vsfpa | 201 [2989 [3291 | -1/100 [vsfpa [rtrctd | 400 | descend [-1/100 |
Commands: flying_clean, vs_fpa_mode, extend_flaps
3 vsfpa | 200 [2988 [3291 | -1/100 [vsfpa [extnd [180 | descend [0 |
Commands: flying_flaps, mode _reversion, pilots_idle
4 [opelb | 201 [2989 [3291 | -1/100 | vsfpa [extnd [180 | descend [0 |
Commands: flying_flaps, op_clb_mode, pilots_idle
5 opclb | 200 [2990 | 3291 | -1/100 | vsfpa [extnd [180 [descend | 1/50 |
Commands: flying_flaps, op-clb_mode, pilots_idle
6 opclb | 190 [3291 [3291 [-1/100 | vsfpa [extnd [180 [descend | 3/100 |

Proc. FMIS 2011 14 /16

Eg ECEASST

This counterexample manifests the automation surprise from Section 2, and does so with a
plausible scenario: the fcu_alt is set to 3291 while the aircraft is flying at 3000; the pilots
decide to descend and enter a negative fcu_fpa; they then extend the f1aps, which causes
overspeed and a mode reversion to op_c1b mode, which in turn causes a strong climb.

Some infelicities remain in the scenario: for example, the values for pitch and fcu_fpa
are implausible. These can be adjusted by adding additional commands to the constraints
module. Although formally equivalent, there is a conceptual distinction between constraints that
truly refine the model and those that serve merely to nudge the counterexample in a preferred di-
rection; if desired, the latter can be placed in a separate synchronous observer module. Although
we have not developed this example beyond what is described here, we are confident (because
of the strength of abstraction available) that the approach can be applied to more detailed and
realistic specifications of aircraft automation and human mental models.

5 Conclusions

We have described and illustrated a method for modeling and analyzing interactive hybrid sys-
tems at a very abstract level. This enables us to model human-machine interactions in the pres-
ence of physical plant, such as airplanes, whose dynamics are described by differential equations.
The method uses relational abstractions for the hybrid components: these are approximations
that specify relations between the continuous state variables “now” and any future state, pro-
vided the discrete variables remain the same. We described how relations may be specified to a
conventional model checker using synchronous observers. Automated analysis of our approxi-
mations builds on the ability SMT solvers to reason over the theories of uninterpreted functions
and arithmetic, and the exploitation of this ability by infinite bounded model checkers.

Of course, any discrete approximation for the hybrid components enables model checking of
interactive hybrid systems; the arguments in favor of our method are that we can be reasonably
confident of soundness, it is easy to refine the models, and it is easy to analyze them. For
soundness (with respect to safety properties) it is necessary that the behaviors of our relational
approximations are a superset of those of a fully accurate model (i.e., with differential equations).
It is possible to derive such sound approximations by analysis of the accurate model [ST11] but
this is computationally challenging. What we do instead is assert simple relations in whose
soundness we are confident (e.g., when pitch angle is positive, altitude increases).* If model
checking reveals a potential automation surprise, then it is easy to refine the approximation by
adding additional relational constraints to the synchronous observer so that a realistic scenario is
developed, or the anomaly is found to be due to excessive approximation.

This approximation method is suitable for examining new air traffic procedures for human-
computer interaction issues; when a possible problem is identified, additional constraints can be
used to push the counterexample toward a plausible scenario that can be examined in a higher fi-
delity modeling environment, such as a simulator. The NextGenAA project plans to evaluate this
method on new procedures such as Continuous Descent Approach (CDA) and Oceanic Airspace
In-Trail Procedure (ATSA ITP) [BBF'11]. Verifying safety, or finding anomalies, in complex
interactions such as these, involving humans, automation, and hybrid/dynamic systems, requires
very strong, but appropriate use of abstraction in modeling. The method introduced in this paper

4 This might not be true in certain conditions, such as downdrafts; that is outside our model, but could be added.

15/16 Volume 45 (2011)

Formal Modeling and Analysis for Interactive Hybrid Systems E}

adds a new approach to the collection of highly abstract modeling and analysis methods available
for this and similar domains.

Acknowledgements: Ashish Tiwari introduced us to relational abstractions, and to some of the
ways to represent them in SAL.

Bibliography

[BBF'11] E.J. Bass, M. L. Bolton, K. M. Feigh, D. Griffith, E. Gunter, W. Mansky, J. Rushby.

[BEA94]

[CJROO]

[Javo8]

[JL83]

[MRSO02]

[MRSO03]

[Rus00]

[Rus02]

[Rus06]

[SAL]

[ST11]

[SWB97]

Toward a Multi-Method Approach to Formalizing Human-Automation Interaction
and Human-Human Communications. In IEEE International Conference on Systems,
Man, and Cybernetics. Anchorage, AK, Oct. 2011. To appear.

Bureau d’Enquétes et d’ Analyses pour la sécurité de 1’aviation civile. Report on the
incident on 24 September 1994 during approach to Orly (94) to the Airbus A 310
registered YR-LCA operated by TAROM. 1994. Report YR-A940924A.

J. Crow, D. Javaux, J. Rushby. Models and Mechanized Methods that Integrate Hu-
man Factors into Automation Design. In Abbott et al. (eds.), International Confer-
ence on Human-Computer Interaction in Aeronautics: HCI-Aero 2000, pp. 163-168.
Toulouse, France, Sept. 2000.

D. Javaux. Explaining Sarter and Woods’ Classical Results. In Leveson and Johnson
(eds.), 2nd W’kshop on Human Error, Safety, and S/W Design. Seattle, WA, Apr. 1998.

P. N. Johnson-Laird. Mental Models. Cognitive Science Series 6. Harvard University
Press, Cambridge, MA, 1983.

L. de Moura, H. Rue3, M. Sorea. Lazy Theorem Proving for Bounded Model Check-
ing over Infinite Domains. In Voronkov (ed.), /8th International Conference on Auto-
mated Deduction. LNCS 2392, pp. 438-455. Copenhagen, Denmark, July 2002.

L. de Moura, H. RueB, M. Sorea. Bounded Model Checking and Induction: From
Refutation to Verification. In Hunt, Jr. and Somenzi (eds.), Computer-Aided Verifica-
tion. LNCS 2725, pp. 14-26. Boulder, CO, July 2003.

J. Rushby. Analyzing Cockpit Interfaces Using Formal Methods. In Bowman (ed.),
Proceedings of FM-Elsewhere. Electronic Notes in Theoretical Computer Science 43.
Elsevier, Pisa, Italy, Oct. 2000.

J. Rushby. Using Model Checking to Help Discover Mode Confusions and Other
Automation Surprises. Reliability Eng. and System Safety 75(2):167-177, Feb. 2002.

J. Rushby. Harnessing Disruptive Innovation in Formal Verification. In Hung and
Pandya (eds.), Fourth International Conference on Software Engineering and Formal
Methods, pp. 21-28. Pune, India, Sept. 2006.

SAL and Yices home pages. http://sal.csl.sri.com/ and http://yices.csl.sri.com/.

S. Sankaranarayanan, A. Tiwari. Relational Abstractions for Continuous and Hybrid
Systems. In Computer-Aided Verification. LNCS. Snowbird, UT, 2011. To appear.

N. B. Sarter, D. D. Woods, C. E. Billings. Automation Surprises. In Salvendy (ed.),
Handbook of Human Factors and Ergonomics. Wiley and Sons, 2nd edition, 1997.

Proc. FMIS 2011 16/ 16

http://sal.csl.sri.com/
http://yices.csl.sri.com/

	Introduction
	An Example Scenario: A320 Speed Protection
	Formal Modeling Issues
	Example: Formal Analysis for A320 Speed Protection
	Conclusions

