
Electronic Communications of the EASST
Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

Isomorphism Checking in GROOVE

Arend Rensink

11 pages

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Isomorphism Checking in GROOVE

Arend Rensink

Department of Computer Science, University of Twente
P.O.Box 217, 7500 AE Enschede, The Netherlands

Abstract: In this paper we show how isomorphism checking can be used as an
effective technique for symmetry reduction in graph-basedstate spaces, despite
the inherent complexity of the isomorphism problem. In particular, we show how
one can useelement-based graph certificate mappingsto help in recognising non-
isomorphic graphs. These are mappings that assign to all elements (edges and nodes)
of a given graph a number that is invariant under isomorphism, in the sense that any
isomorphism between graphs is sure to preserve this number.The individual ele-
ment certificates of a graph give rise to a certificate for the entire graph, which can
be used as a hash key for the graph; hence, this yields a heuristic to decide whether a
graph has an isomorphic representative in a previously computed set of graphs. We
report some experiments that show the viability of this method.

Keywords: Graph Certificates, Isomorphism, GROOVE, Model Checking

1 Introduction

The core activity of any model checker is state space exploration. In case of exiplicit-state
model checking, for this purpose it is imperative to be able to detect, as fast as possible, whether
the target state of a newly computed transition has been encountered before during exploration.
In a setting where the states are graphs, as in the GROOVE tool[10], in fact it is even more
interesting to know if anisomorphicstate has been encountered before: differences that are finer
than isomorphism do not matter to any property that we might want to check, and by collapsing
isomorphic states one achieves the strongest possible formof symmetry reduction. Not only
does this reduce the state space by a factor equal to the degree of symmetry in the problem, but it
also relieves us from the burden of choosing clever representatives for fresh nodes or edges that
are newly created in a production: the isomorphism of the target graph does not depend on this
choice.

The downside of this idea, obviously, is that graph isomorphism is a hard problem, believed not
to be polynomial (see, e.g., [14]). The main contribution of this paper is to discuss the palette of
choices made in GROOVE to alleviate this problem. The essence is to usecertificates(often also
called invariants) to characterise the isomorphism classes of graphs. The necessary definitions
are given in Section2; in Section3 we discuss the particular algorithm implemented in GROOVE
to compute the certificates. In Section4 we show this has been successful at least to some degree:
for a particular (highly symmetrical) example problem, thanks to the automatic isomorphism
checking, GROOVE is able to generate answers for larger-sized problems than conventional
model checkers. Finally, in Section5 we discuss the results, including some directions for further
improvement.

1 / 11 Volume 1 (2006)

Isomorphism Checking in GROOVE

2 Definitions

We assume a universeLab of labels, with an injective hash functionhash: Lab→Nat assigning
numbers to labels. We first recall the definitions of graphs and isomorphism.

Definition 1 (graphs and isomorphisms) Agraph is a tuple〈V,E,src, tgt, lab〉 with V a set of
nodes andE a set of edges,src, tgt : E→V the source and target function, andlab: E→ Lab

the edge labelling function. Given two graphsG,H, an isomorphism f: G→H is a pair of
bijections fV : VG→VH and fE : EG→EH such thatsrcH ◦ fE = fV ◦srcG, tgtH ◦ fE = fV ◦ tgtG
andlabH ◦ fE = labG.

Let Graph denote the universe of graphs. We recall the following (see,e.g., [14]):

Observation2 (complexity of isomorphism) Given two graphsG,H, decidingG∼= H is in NP
relative to|VG|, but not known either to be in P or to be NP-complete; it is thought to be neither.

An important concept in algorithms for isomorphism checking is that of aninvariant or cer-
tificate:

Definition 3 (graph certificates) Agraph certificate mappingis a functionc: Graph→X for
some setX such thatG∼= H impliesc(G) = c(H). c(G) is called thecertificateof G. c is called
element-basedif c(G) = (cG

V ,cG
E) with cG

V : VG→YV andcG
E : EG→YE for some setsYV ,YE, such

that f : G∼= H impliescG
V = cH

V ◦ fV andcG
E = cH

E ◦ fE.

Hence, an element-based graph certificate mapping is one forwhich the setX of graph certifi-
cates consists of individual certificate mappings for the nodes and edges of the graphs. In this
paper we concentrate on certificates inNat, i.e., such thatX = YV = YE = Nat. Straightforward
examples are:

• G 7→ |EG|, yielding the number of edges in a graph;

• G 7→ (cV ,cE) wherecV : v 7→ |tgt−1
G (v)| andcE : e 7→ hash(labG(e)).

Note that, given an element-based certificate mappingc, we can easily derive a certificate map-
ping c̄: Graph→Nat, for instance by defining

c̄: G 7→ ∑
v∈VG

cG
V (v)+ ∑

e∈EG

cG
E(e) . (1)

Bisimulation. Our algorithm for isomorphism checking is inspired bybisimilarity as defined
by Milner [7] and Park [9], but this is due to our own background; in terms of the literature
on graph isomorphism, what we are about to define correspondsto the notion of anequitable
partition (see McKay [6]).

Definition 4 (generalised bisimilarity) Given a graphG, a generalised bisimulation over Gis
a relationRG ⊆ (V ×V)∪ (E×E) satisfying the following two properties:

Proc. GraBaTs 2006 2 / 11

ECEASST

a

H

b

b
a

b b

G a a

Figure 1: Two bisimilar, non-isomorphic graphs

1. (v,w) ∈RG implies there is a bijectiongv from the incident edges ofv to the incident edges
of w, such that for alle∈ dom(gv): (i) src(e) = v iff src(gv(e)) = w, (ii) tgt(e) = v iff
tgt(gv(e)) = w, and (iii) (e,gv(e)) ∈ RG.

2. (d,e) ∈ RG implies (i) lab(d) = lab(e) and (ii) (src(d),src(e)),(tgt(d), tgt(e)) ∈ RG.

Generalised bisimilarity over G, denoted∼G, is the largest generalised bisimulation overG.

The notion of a largest generalised bisimulation is well-defined because the identity relation
is a generalised bisimulation, as is the union of an arbitrary set of generalised bisimulations.
The connection between generalised bisimilarity and isomorphism is given by the following
proposition, whereG⊎H denotes the disjoint union ofG andH:

Proposition 1 f : G∼= H implies v∼G⊎H fV(v) for all v ∈VG and e∼G⊎H fE(e) for all e∈ EG.

On the other hand, it isnot the case that generalised bisimilarity completely predicts isomor-
phism; rather, it gives rise to a strictly coarser relation.To make this statement precise, let us
denoteG∼H if there is a bijective mappingh from the elements ofG to those ofH (not necessar-
ily a morphism) such thatv∼G⊎H h(v) ande∼G⊎H h(e) for all v∈V, e∈ E. Now Proposition1
can be seen to imply thatG ∼ H wheneverG ∼= H. However, the inverse does not hold; in
other words,∼ is strictly coarser than∼=. An example is given in Figure1, which shows two
non-isomorphic graphsG andH, with some non-trivially∼G⊎H-related node pairs connected by
dashed lines. Clearly,G∼ H in the sense defined above.

As discussed in the introduction, our business here is statespace exploration, where a graph
is associated with each state and we want to collapse states with isomorphic associated graphs.
The problem to be solved is therefore not just comparing two graphs up to isomorphism, but
determining whether we have already encountered any isomorphic variant of a given graph. To be
precise, given a graphG and a previously computed, finite setSof graphs, which are guaranteed
to be distinct up to isomorphism, we want to find the uniqueH ∈ Ssuch thatG∼= H if such an
H exists, or to computeS∪{G} otherwise. (Clearly, the problem of deciding isomorphism of
two given graphsG,H appears as a special case of this, by takingS= {H}.) In this problem, not
only the size of the graphs but also the size ofS is a factor in the complexity.

3 The algorithm

The algorithm we use to solve the problem described above consists of the following elements:

3 / 11 Volume 1 (2006)

Isomorphism Checking in GROOVE

1. For a given graphG, we compute a sequence of element certificate mappings(ci
V ,ci

E) for
i ∈ Nat, mapping toNat; each such mapping induces a similarity relation∼i ⊇ ∼G over
the nodes and edges ofG, defined byv∼i w if ci

V(v) = ci
V(w) andd ∼i e if ci

E(d) = ci
E(e);

2. We stop the computation at the firsti for which |V/∼i| ≤ |V/∼i−1|, i.e., as soon as the
number of cells in the partition induced by the certificate mapping no longer grows;

3. From the ensuing element-based graph certificate mappingc with (cG
V ,cG

E) = (ci
V ,ci

E), we
derive a certificate mapping ¯c as in (1);

4. The set of previously explored graphsSis stored as a hash set with hash values determined
by c̄;

5. After computing ¯c(G) for a new graphG, we determine the set of graphsQ⊆ Sdefined by
Q = {H | c̄(H) = c̄(G)}. We try to establishG∼= H for all H ∈ Q; if this fails, we addG
to S.

6. To testG∼= H, we proceed as follows:

Equal graphs First testG = H; if so, obviouslyG∼= H;

Injective element certificates Otherwise, test ifcG
V andcG

E are injective; if so,G∼= H if
and only if((cH

V)−1◦cG
V ,(cH

E)−1◦cG
E) is an isomorphism;

Complex isomorphism Otherwise, define≃ ⊆ (VG ×VH)∪ (EG ×EH) such thatv ≃ w
iff cG

V (v) = cH
V (w) and d ≃ e iff cG

E(d) = cH
E (e); if f : G ∼= H then v ≃ fV(v) and

e≃ fE(e) for all v∈VG, e∈ EG, so≃ gives a good starting point for findingf .

False positivesIf all fails, thenc̄(G) = c̄(H) whereasG 6∼= H; we call this afalse positive
of the certificate function ¯c.

Obviously, ifG∼ H but G 6∼= H then a false positive is unavoidable; but false positives may also
arise in caseG 6∼ H, depending on how well the certificate mapping does in assigning distinct
values to elements that are not bisimilar.

Although the requirements on the sequence of element certificate mappings that are listed above
are sufficient to guarantee thecorrectnessof the algorithm, itsperformancedepends strongly on
some further “quality criteria”. Desirable properties forthe sequence of mappings are:

• Each next similarity relation should refine the previous; i.e., ∼i+1 ⊆ ∼i for all i. (This
implies that the termination criterion in Step2 is satisfied if and only ifV/∼i = V/∼i−1,
i.e., if and only if thei-th certification mapping induces thesamepartition as the previous
one.) Moreover, once the refinement has stabilised (∼i+1 = ∼i at somei) it should remain
stable (∼ j = ∼i for all j > i). (This ensures that we do not terminate the iteration too
early.)

• The sequence of similarity relations should converge to∼G; i.e.,∼i = ∼G for somei. (In
combination with the requirement∼i ⊇∼G in Step1, this implies that|V/∼i+1| ≤ |V/∼i |
for that i, and hence the termination criterion in Step2 is fulfilled. If, furthermore, the
previous desideratum is also met, we are sure to actually terminate at thati and not before,
so the mappingc is optimal for our purpose.)

Proc. GraBaTs 2006 4 / 11

ECEASST

b b

ab

a

a

3

2

4

5

1
ci

V 1 2 3 4 5

i = 0 1 1 1 1 1
i = 1 −7 3 3 3 3
i = 2 −14 16 −4 11 −4
i = 3 14 55 −35 6 −35

ci
E (1,a,2) (2,b,4) (3,b,1) (4,a,3) (4,a,5) (5,b,1)

i = 0 1 2 2 1 1 2
i = 1 4 6 6 4 4 6
i = 2 1 14 4 11 11 4
i = 3 4 43 −12 19 19 −12

Figure 2: Example graph and element certificate function, for hash(a) = 1,
hash(b) = 2 and newCert(old, lab,srcCert, tgtCert) = old+ lab+srcCert+ tgtCert

• The number of iterations until termination should be small,and the computation of each
next mapping in the sequence fast. (We recall from Paige and Tarjan [8] that the average-
case complexity of computing bisimilarity, which is based on the same principle of par-
tition refinement, isO(nlogn) with n = |V|. In analogy, we conjecture that the average
number of iterations ideally isO(log|V|), in which case the complexity of each iteration
is O(|V|).)

Our basic strategy is to startc0
V at some constant andc0

E at the hash value of the edge labels, and
to compute the certificates in each next iteration as a function of the previous certificate values
for the immediate local context, i.e., the end nodes for the edges and the incident edges for the
nodes. In short:

ci
E(e) =

{

hash(lab(e)) i f i=0

newCert(ci−1
E (e), lab(e),ci−1

V (src(e)),ci−1
V (tgt(e))) otherwise

ci
V(v) =

{

1 i f i=0

ci−1
V (v)+ ∑v=src(e) ci

E(e)−∑v=tgt(e) ci
E(e) otherwise.

where the most important parameter is the functionnewCert, which computes the next edge
certificate value from the previous one, the edge label, and the previous certificate values of the
source and target nodes. As an aside, it is not difficult to prove that, irregardless of the choice of
newCert, the above definition results in a valid sequence of element certificate mappings.

As an example, in Figure2 we show a graph with some internal symmetry and the calculation
of ci

V andci
E until V/∼i converges, which is fori = 3, atV/∼3 =V/∼2 = {{1}{2},{3,5},{4}}.

Note that, for the sake of understandability, here we have taken a particularly simple choice for
newCert.

It is the task ofnewCertto pick appropriate values so as to meet the desiderata listed above. For
instance, ideallynewCertshould be injective (so that the sequence converges, and distinctions

5 / 11 Volume 1 (2006)

Isomorphism Checking in GROOVE

in label or end nodes are taken into account), and everywhereasymmetric in its third and fourth
parameter (so that the direction of the edges is taken into account). In practice, however, we have
to make do with the finite fragment of integers offered by our programming language of choice;
in Java, the typeint with 32 bits. As a consequence, we cannot even ensure injectivity. The
current implementation is as follows:

int newCert(int old, Label lab, int srcCert, int tgtCert) {
int srcShift = 8;
int tgtShift = (hash(lab) & 0xf) + 1;
return ((srcCert << srcShift) | (srcCert >>> (32-srcShift)))

+ ((tgtCert << tgtShift) | (tgtCert >>> (32-tgtShift)))
+ old;

}

The core algorithm for the computation of(cG
V ,cG

E), as outlined above (Steps1–3), is given in
Table3. We assume arraysint[] src,tgt,lab encoding the graph withint vSize, eSize

the node and edge count; the result of the algorithm is given by arraysint[] vCert,eCert.
To determine the size of the partitions we have implemented atypeIntSet with methodsvoid
add(int i) andint size(); it works on the basis of a hash set.

Note that the complexity of each iteration isO(|V|+ |E|), and the number of iterations is
bounded by|V| (since the iteration terminates as soon as the size of the partition stops grow-
ing, and the size can obviously grow no larger than|V|). As mentioned above, by analogy to
the complexity of bisimilarity checking we conjecture thatthe average number of iterations is
O(log|V|).

4 Results

In this section we provide some statistics that give an impression on how well GROOVE performs
with respect to isomorphism checking using the setup described above, and we discuss future
work.

Table4 shows figures from a number of case studies we have undertaken. These were mea-
sured on a 3 GHz Pentium IV machine, running the development version of GROOVE in the
JVM 1.5.0 with 1,5 GB of memory. The first three case studies were also reported (for an older
version of GROOVE) in [13, 11]).

Mutex is a mutual exclusion protocol taken from [3]. It is characterised by relatively small
states with a lot of unpredictable symmetries. The figures reported here are for graphs of
up to 6 nodes (which can either be processes or resources, in terms of the protocol).

Philosophers is a variant of the well-known dining philosophers example,here computed for
a problem size 12. For a precise description see [13]. It is characterised by a 12-fold
symmetry, which is quite predictable as no nodes are createdor deleted.

Append models a concurrently invoked append method that puts a new element to the tail of
a list. For a precise description see [13]. The case is characterised by symmetry that is
mainly due to confluence of rules; the graphs are quite dynamic and grow relatively large.
The figures reported here are for a list of length 8 and 4 concurrent invocations.

Proc. GraBaTs 2006 6 / 11

ECEASST

int[] tmp = new int[vSize];
int partSize = 1;
// initialise the edge certificates
for (int e = 0; e < eSize; e++)

eCert[e] = hash(lab[e]);
// initialise the node certificates
for (int v = 0; v < vSize; v++)

vCert[v] = 1;
do {

// store the current number of partition cells
int oldPartSize = partSize;
// calculate the new edge certificates
for (int e = 0; e < eSize; e++) {

eCert[e] = newCert(eCert[e], lab[e], vCert[src[e]],
vCert[tgt[e]]);

// propagate to the endpoints
tmp[src[e]] += eCert[e];
tmp[tgt[e]] -= eCert[e];

}
// collection of certificate values, used to compute partition size
IntSet certSet = new IntSet();
for (int v = 0; v < vSize; v++) {

// copy the temporary node certificates to the real ones
vCert[v] = tmp[v];
tmp[v] = 0;
certSet.add(vCert[v]);

}
partSize = certSet.size();
// continue while the number of cells in the partition still grows

} while (partSize > oldPartSize);

Table 3: Core of the certificate computation

Gossips models the “gossipping girls” example (see, e.g., [4]). It is characterised by a huge
amount of unpredictable symmetry. The graphs are static: nonodes are created or deleted.
The figures reported here are for 8 girls.

The results in the table should be interpreted as follows:

• Theaverage nodeandedge counts give an indication of the size of the graphs involved.

• Thecomparison countis the number of graphs for which the essential question: “Did we
encounter an isomorphic representative of this graph before?” had to be answered.

• Thedistinct graph count is the total number of distinct graphs, i.e., the number of times
theproperanswer to the above question was “no”.

• Theequal graph certificate countis the number of times the certificate of a new graph
had been encountered before, so that theactual answer to the above question was “yes”
(including false positives).

7 / 11 Volume 1 (2006)

Isomorphism Checking in GROOVE

Mutex Philosophers Append Gossips

Average node count 5 24 38 16
Average edge count 14 66 114 64

Comparison count 1212724 2873309 116643 12193600
Distinct graph count 515134 347337 31104 2309763
Equal graph certificate count 698664 2526077 82905 9889024

Equal graphs 252402 2076356 36503 3314920
Injective element certificates 436454 449616 42734 7936
Complex isomorphism 8734 0 3668 6560981
False positives 1074 105 0 5187

Isomorphism checking (s) 76 269 21 12802
Isomorphism checking (% of total) 58% 53% 28% 72%

Computing certificates (% of iso time) 86% 65% 62% 15%
Graph equality (% of iso time) 5% 27% 12% 1%
Element certificate (% of iso time) 7% 8% 16% 0%
Complex isomorphism (% of iso time) 2% 0% 10% 84%

Table 4: Isomorphism checking results

• The next lines split up the further analysis of the equal graph certificates; see Section3.
The sum of these four cases equals the total above.

• The number of false positives is listed separately; the following equation should hold

comparisons = distinct graphs + equal certs− false positives .

• The isomorphism checkingrows indicate the time taken to compute the above.

The results give rise to the following observations:

1. Isomorphism checking takes between 25% and 75% percent ofthe total time for state
space exploration — a major fraction.

2. The degree of symmetry in all but the “append” example is sufficient to warrant the time
taken for isomorphism checking. For instance, the “gossips” example can be analysed in a
traditional model checker, without symmetry reduction, upto size 6 only — which should
be contrasted to the size 8 reported here.1

3. In most cases, the majority of this time is taken up by computing the graph element cer-
tificates. The exception is the “gossips” example, which hasa huge amount of non-trivial
symmetry.

4. The graph certificates are very accurate in predicting isomorphism, yielding false positives
in only 0,2% of cases for the worst case (the “mutex” example).

1 In [12] we report a further improvement by an order of magnitude, achieved by using quantified transformation
rules.

Proc. GraBaTs 2006 8 / 11

ECEASST

5. Between 30% and 80% of the isomorphic graphs are actually equal.

6. In the great majority of the remaining cases, the graph element certificates are injective
(or, in other words, in terms of Definition4 there are no non-trivial bisimilarities in the
graphs) so that they give a fast method for establishing isomorphism. The exception is,
once more, the “gossips” example.

7. In the “gossips” example, most of the time (amounting to 51% of the total time for state
space exploration) is spent in establishing the actual isomorphisms. There is certainly
room for improvement here.

8. In the “append” example, which is the most realistic software model with the least symme-
try, the most dynamism and the largest average graph size, the isomorphism check takes
0,18 ms per graph.

As an aside, it may be worth mentioning that even in the smaller case studies, over 50% of the
total state space exploration time is taken up by garbage collection. In the “gossips” case this is
much worse; we have no precise figures here, but we conjecturethat in the order of 90% of the
total time is taken up by garbage collection.

Parallel independence. Whatever we do to improve the performance of isomorphism check-
ing, as long as we are dealing with arbitrary graphs (but see below) it will always remain a major
bottleneck. The best improvement would be to avoid having tocheck for isomorphism in the first
place. It turns out that this is indeed often possible, namely by taking advantage of parallel inde-
pendence of productions. Namely, if the applications ofr1 andr2 in the following diagram are
independent, then we can predict beforehand, without having to check anything, thatK1

∼= K2.

H1 r2
// K1

G

r1

>>~~~~~~~~

r2

 A
AA

AA
AA

∼=

H2
r1 // K2

We have recently improved GROOVE based on this insight. It turns out that, with respect to
Table4, 50–100% of theequalgraphs are due to such “confluent diamonds”. Since we can then
omit even the computation of the certificate, this results ina notable speedup in isomorphism
checking, of 25% in the “append” and “gossips” examples to 70% in the “philosophers” example.
Our implementation is inspired by [2].

5 Conclusion

Summarising, the contribution of this paper is the following:

• We have set out the variant of the graph isomorphism problem we need to solve for the
purpose of symmetry reduction in GROOVE, and described the basic strategy for solving
this using graph certificates;

9 / 11 Volume 1 (2006)

Isomorphism Checking in GROOVE

• We have presented an algorithm to compute the certificate values, as implemented in
GROOVE;

• We have reported and discussed some experimental results.

We have not yet carried out a sufficiently extensive comparative investigation to know how well
our implementation does with respect to either other model checkers that use symmetry reduction
(e.g., symmetric SPIN [1] or Murφ [5]), or with respect to other tools for isomorphism checking
(e.g., Nauty [6]); this is clearly a necessary part of our future work.

This paper allows states that can be arbitrary graphs. This is in fact one of the major differences
with traditional model checkers such as the aforementionedSPIN and Murφ , which a priori
assume a rather rigid structure consisting of processes anddata. Though we want to stick to the
graph view, we believe that for software models it may be sufficient to usedeterministicgraphs
only — that is, graphs for which the out-degree of any node forany given label does not exceed
1. Since isomorphism checking is known to be polynomial and actually sometimes linear for
subclasses of graphs satisfying this type of restrictions,the benefit may be enormous. This, too,
is future work.

Acknowledgements: The research reported herein was carried out as part of the GROOVE
project, funded by NWO (Grant 612.000.314)

Bibliography

[1] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric SPIN. STTT, 4(1):92–106, 2002.

[2] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. An event structure semantics
for safe graph grammars. In E.-R. Olderog, editor,Programming Concepts, Methods and
Calculi, volume A–56 ofIFIP Transactions, pages 423–444. IFIP, North-Holland Publish-
ing Company, 1994.

[3] R. Heckel. Compositional verification of reactive systems specified by graph transforma-
tion. In E. Astesiano, editor,Fundamental Approaches to Software Engineering (FASE),
volume 1382 ofLecture Notes in Computer Science, pages 138–153. Springer-Verlag,
1998.

[4] C. A. J. Hurkens. Spreading gossip efficiently.Nieuw Archief voor Wiskunde, 1(2):208–
210, 2000.

[5] R. Iosif. Symmetry reductions for model checking of concurrent dynamic software.STTT,
6(4):302–319, 2004.

[6] B. D. McKay. Practical graph isomorphism.Congressus Numerantium, 30:45–87, 1981.

[7] R. Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in Computer
Science. Springer, 1980.

Proc. GraBaTs 2006 10 / 11

ECEASST

[8] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal of Com-
puting, 16(6):973–989, 1987.

[9] D. Park. Concurrency and automata on infinite sequences.In P. Deussen, editor,Proceed-
ings 5th GI Conference, volume 104 ofLecture Notes in Computer Science, pages 167–183.
Springer, 1981.

[10] A. Rensink. The GROOVE simulator: A tool for state spacegeneration. In J. Pfalz,
M. Nagl, and B. Böhlen, editors,Applications of Graph Transformations with Industrial
Relevance (AGTIVE), volume 3062 ofLecture Notes in Computer Science, pages 479–485.
Springer-Verlag, 2004.

[11] A. Rensink. Time and space issues in the generation of graph transition systems. InInter-
national Workshop on Graph-Based Tools (GraBaTs), volume 127 ofElectronic Notes in
Theoretical Computer Science, pages 127–139. Elsevier Science Publishers, 2005.

[12] A. Rensink. Nested quantification in graph transformation rules. In A. Corradinit et al.,
editor,International Conference on Graph Transformation (ICGT), volume 4178 ofLecture
Notes in Computer Science, pages 1–13. Springer-Verlag, 2006.

[13] A. Rensink,Á. Schmidt, and D. Varró. Model checking graph transformations: A com-
parison of two approaches. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg,
editors,International Conference on Graph Transformations (ICGT), volume 3256 ofLec-
ture Notes in Computer Science, pages 226–241. Springer-Verlag, 2004.

[14] E. W. Weisstein. Isomorphic graphs. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/IsomorphicGraphs.html, 2002.

11 / 11 Volume 1 (2006)

http://mathworld.wolfram.com/IsomorphicGraphs.html

	Introduction
	Definitions
	The algorithm
	Results
	Conclusion

