Proceedings of the
Second International Workshop on
Bidirectional Transformations
(BX 2013)

Lenses for Web Data

Raghu Rajkumar, Sam Lindley, Nate Foster, James Cheney

21 pages
Lenses for Web Data

Raghu Rajkumar1, Sam Lindley2, Nate Foster1, James Cheney3

1 Cornell University
2 University of Strathclyde
3 University of Edinburgh

Abstract: Putting data on the web typically involves implementing two transformations: one to convert the data into HTML, and another to parse modifications out of interactions with clients. Unfortunately, in current systems, these transformations are usually implemented using two separate functions—an approach that replicates functionality across multiple pieces of code, and makes programs difficult to write, reason about, and maintain. This paper presents a different approach: an abstraction based on formlets that makes it easy to bridge the gap between data stored on a server and values embedded in HTML forms. We introduce formlenses, which combine the advantages of formlets with those of lenses to provide compositional, bidirectional form-based views of Web data. We show that formlenses can be viewed as monoidal functors over lenses, analogously to formlets, which are applicative functors. Finally, we investigate the connection between linearity and bidirectional transformations and describe a translation from a linear pattern syntax into formlens combinators.

Keywords: Formlets, lenses, applicative functors, monoidal functors.

1 Introduction

Putting data on the web typically involves implementing two transformations: one to convert the data into HTML, and another to parse modifications out of interactions with clients. Unfortunately, in current systems, these transformations are usually implemented using two separate functions—an approach that replicates functionality across multiple pieces of code, and makes programs difficult to write, reason about, and maintain.

To illustrate, suppose that we have a database of visiting speakers, and we want to build an application that supports viewing and editing this database through a Web browser. Figure 1 gives a possible implementation of this application in Haskell. The \textit{render} function converts a single \textit{Speaker} value into HTML with an embedded form, which allows a user to edit the details associated with the speaker and submit the modifications back to the server. The function \textit{collect} handles these responses by extracting an updated \textit{Speaker} value out of the association list \textit{Env}, which is returned to the server by the browser.

Readers unfamiliar with Haskell language can find documentation for the functions used in this paper at \url{http://www.haskell.org/hoogle}. This example uses several functions based on the \textit{Text.Html} module and the standard prelude: \textit{inputTag} constructs an input element, \textit{brTag} constructs a linebreak, \textit{lineToHtml} converts a string to HTML, \textit{(+++)} concatenates HTML, \textit{lookup} retrieves a value from an association list and returns a \textit{Maybe} value, \textit{fromJust} extracts the encaps-
Lenses for Web Data

data Date = Date { month :: Int, day :: Int }

data Speaker = Speaker { name :: String, date :: Date }

render :: Speaker → Html

render (Speaker n (Date m d)) =
 inputTag { name = "name", value = n } +++ brTag +++
 lineToHtml "Month: " +++ inputTag { name = "month", value = show m } +++ brTag +++
 lineToHtml "Day: " +++ inputTag { name = "day", value = show d }

data Env = [(String, String)]

collect :: Env → Speaker

collect e = let n = fromJust (lookup "name" e) in
 let m = read (fromJust (lookup "month" e)) in
 let d = read (fromJust (lookup "day" e)) in
 Speaker n (Date m d)

Figure 1: Haskell code for Speaker example.

As a simple example of a formlet, consider the html combinator, which generates static HTML without any embedded form elements,

html :: Html → Formlet ()
html h i = (h, λ _ → (), i)

Formlets. In prior work, Cooper et al. [CLWY08] introduced a high-level abstraction for building Web forms called formlets. Formlets encapsulate several low-level details including selecting field names for elements and parsing data from client responses. Formlets can be represented in Haskell as functions that take a source of names as an argument, concretely, an Int, and produce a triple consisting of an HTML document, a collect function, and a modified namesource.

type Formlet a = Int → (Html, Env → a, Int)

The names of any generated form fields are drawn from the namesource, and the collect function looks up precisely these names.

As a simple example of a formlet, consider the html combinator, which generates static HTML without any embedded form elements,
the *text* combinator, which wraps plain text as HTML,

\[
\text{text} :: \text{String} \rightarrow \text{Formlet} ()
\]

\[
text s = \text{html}\ (\text{stringToHtml} s)
\]

and the *inputInt* combinator, which builds a form that accepts an integer:

\[
\text{inputInt} :: \text{Formlet} \text{Int}
\]

\[
\text{inputInt} i = \text{let } n = \text{show} i \text{ in } \left(\text{inputTag} \{\ \text{name} = n, \text{value} = "\"\}, \lambda e \rightarrow \text{read} (\text{fromJust} (\text{lookup} n e)), i + 1 \right)
\]

Combinators for inputting other primitive types such as *String* and *Bool* can be defined similarly.

Formlets can be combined into larger formlets using the interface of *applicative functors*, a generic mathematical structure for representing computations with effects [MP08]. We give the definition of applicative functors here using a Haskell *type class*. A type class defines an interface that can be provided by different *instances* for different types. For example, the standard *Eq* type class provides an equality function:

\[
\text{class} \text{Eq a where}
\]

\[
(\equiv) :: \text{a} \rightarrow \text{a} \rightarrow \text{Bool}
\]

and it can be instantiated with different types replaced by *a*, defining different behaviors:

\[
\text{data} \text{Fraction} = \{ \text{num} :: \text{Int}, \text{denom} :: \text{Int} \}
\]

\[
\text{instance} \text{Eq Fraction where}
\]

\[
(n_1,d_1) \equiv (n_2,d_2) = n_1 \ast d_2 \equiv n_2 \ast d_1
\]

Readers unfamiliar with type classes may wish consult the Haskell Tutorial\(^1\) for further details.

The Haskell standard library includes a *Functor* type class that corresponds roughly to the category-theoretic notion of functor.

\[
\text{class} \text{Functor f where}
\]

\[
\text{fmap} :: (\text{a} \rightarrow \text{b}) \rightarrow f \text{a} \rightarrow f \text{b}
\]

Here, \(f\) is a type constructor—that is, an operation \(f : \ast \rightarrow \ast\) that takes a type and produces another type—and *Functor* \(f\) provides the *fmap* function that lifts a function from \(\text{a} \rightarrow \text{b}\) to a function from \(f \text{a} \rightarrow f \text{b}\). For example, in Haskell, \([\]\) is the list type constructor, and there is a built-instance *Functor* \([\]\), whose *fmap* is defined as the usual map function on lists *map* :: \((\text{a} \rightarrow \text{b}) \rightarrow [\text{a}] \rightarrow [\text{b}]\). Similarly, *Maybe* is a type constructor defining optional values,

\[
\text{data} \text{Maybe a} = \text{Just a} \mid \text{Nothing}
\]

and there is a standard *Functor Maybe* instance:

\[
\text{instance} \text{Functor Maybe where}
\]

\[
\text{fmap f Nothing} = \text{Nothing}
\]

\[
\text{fmap f (Just a)} = \text{Just (f a)}
\]

\(^1\)[http://www.haskell.org/tutorial/classes.html]
Applicative functors are defined by extending the \textit{Functor} type class with two operations:

\begin{verbatim}
class (Functor f) => Applicative f where
 pure :: a -> f a
 (⊗) :: f (a -> b) -> f a -> f b
\end{verbatim}

Intuitively, the \textit{pure} function injects a value of type \(a\) into the type \(f a\), while \(⊗\) applies the underlying function to its argument, accumulating effects from left to right. Applicative functor instances are expected to obey the following conditions relating \textit{pure} and \(⊗\):

\begin{align*}
 \text{pure id} \otimes u & = u \\
 \text{pure } (\circ) \otimes u \otimes v \otimes w & = u \otimes (v \otimes w) \\
 \text{pure } f \otimes \text{pure } x & = \text{pure } (f x) \\
 u \otimes \text{pure } x & = \text{pure } (\lambda f \to f x) \otimes u
\end{align*}

The applicative functor instance for formlets is defined as follows:

\begin{verbatim}
instance Applicative Formlet where
 pure a i = (noHtml, \lambda e -> a, i)
 (f ⊗ g) i = let (x, p, i') = f i
 let (y, q, i'') = g i'
 in (x ++ y, \lambda e -> p e (q e), i'')
\end{verbatim}

The \textit{pure} formlet generates empty HTML and has the constant \textit{collect} function. The \textit{render} component of the \(⊗\) operator threads the namesource through its arguments from left to right and accumulates the generated HTML. The \textit{collect} function applies the function (of type \(a \to b\)) produced by \(f\) to the value (of type \(a\)) produced by \(g\).

Using the applicative functor interface and the simple combinators just defined, we can define a formlet for \textit{Speakers} as follows:

\begin{verbatim}
dateForm :: Formlet Date
dateForm = pure (\lambda _ _ m d -> Date m d)
 ⊗ text "Month: " ⊗ inputInt ⊗ html br
 ⊗ text "Day: " ⊗ inputInt ⊗ html br
speakerForm :: Formlet Speaker
speakerForm = pure Speaker ⊗ inputString ⊗ dateForm
\end{verbatim}

The _ arguments in the anonymous function supplied to \textit{pure} discard the () values produced by the \textit{text} and \textit{html} combinators.

\textbf{Formlenses.} Formlets are a useful abstraction, but they only address one half of the problem—they make it easy to construct a function that \textit{produces} a value of type \(a\), but they do not provide a way to describe a function that \textit{consumes} a value of type \(a\) and embeds it in a form. Of course, programmers could write functions of type \(a \to \text{Formlet } a\) (similar to the approach in Hanus’ WUI library [Han06]), but such functions do not support the applicative functor interface, so
large examples would need to be expressed as monolithic programs. Moreover, such functions do not guarantee reasonable behavior, so programmers would have to prove that values are preserved on round-trips by hand.

A different way to think about this problem is to observe that forms are often used to present an updatable view of the underlying data source. The fundamental difficulty in putting data on the Web stems from the fact that programmers are maintaining these views manually, writing explicit forward transformations that put the data into forms, and separate backward transformations that propagate collected values back to the underlying sources. As this terminology suggests, we have a solution to this problem in mind: use ideas from bidirectional transformations [CFH+09] to define formlets that behave like updatable views.

The main goal of this paper is to show how formlets and bidirectional transformations such as lenses [FGM+07] can be combined, yielding an abstraction called Formlenses. A formlen\(s\) takes a value of type \(a\), renders it as a form that can be dispatched to the Web client, translates the response back to a new value of type \(a\), and merges the result with the old value. Intuitively, one can think of a Formlen\(s\) \(a\) as a bidirectional mapping between an \(a\) value and a web page that contains an editable \(a\). But unlike manual approaches, where programmers write explicit render and collect functions, or the approach using functions of type \(a \rightarrow \text{Formlet}\ a\) described above, we can design the formlen\(s\) abstraction to support composition and strong semantic guarantees.

Challenges. Combining formlets and lenses turns out to be nontrivial. If a value of type Formlen\(s\) \(a\) consumes \(a\) values, then \(a\) must appear in a negative position in its type. Conversely, if a value of type Formlen\(s\) \(a\) produces \(a\) values, then \(a\) must appear positively in its type. These observations lead to serious problems defining Formlen\(s\) as a type operator in Haskell: Formlen\(s\) cannot be a covariant Functor over the category \(\text{Hask}\) of Haskell types and functions, and it cannot be a contravariant functor over this category either.

To avoid this difficulty, we shift perspective and consider functors from lenses to (the category of) Haskell types and functions. However, even after restricting attention to these functors, the applicative functor interface is still too strong. Consider the following interface, which generalizes McBride and Paterson’s definition to allow applicative functors on lenses:

```haskell
class LApplicative f where
  lpure :: a \rightarrow f a
  lapp :: f (Lens a b) \rightarrow f a \rightarrow f b
```

To instantiate LApplicative Formlen\(s\), we would need to define functions

```haskell
lpure :: a \rightarrow Formlen\(s\) a
lapp :: Formlen\(s\) (Lens a b) \rightarrow Formlen\(s\) a \rightarrow Formlen\(s\) b
```

For the latter, we would need to (somehow) combine a form that consumes and produces a Lens \(a\ b\) with another form that produces and consumes an \(a\) to obtain a form that produces and consumes a \(b\). This does not seem possible to do in a natural way. Moreover, from a categorical perspective, lapp would not make sense because the category of lenses over Haskell types does not have exponential objects. This remains true if we consider contravariant functors.
Fortunately we can sidestep these problems by observing that the extra structure of Applicative functors is not required for Formlets or Formlenses—monoidal structure suffices. By adapting the basic ideas of Formlets to different (weaker) mathematical structures we are able to employ Formlets in a broader range of settings. More specifically, we can compose formlets with lenses while retaining the ability to compose formlets using a monoidal interface.

Contributions. Overall, this paper makes the following contributions:

- We present a new foundation for formlets based on monoidal functors over lenses, which makes it possible to give them a bidirectional semantics;
- We describe an implementation of formlenses as a combinator library in Haskell;
- We explore the connection between linear syntax and bidirectional transformations and describe a translation from a language of linear patterns into formlens combinators.

The rest of the paper is structured as follows: Section 2 presents the design of formlenses by generalizing the classic definition based on formlets and showing that they are monoidal functors over lenses. Section 3 describes the formlens implementation, including syntactic sugar for describing formlenses using linear patterns. Section 4 briefly reviews related work. Section 5 concludes. The appendix presents background material on monoidal functors that may be helpful for some readers.

2 Formlens Design

This section defines formlenses, the main abstraction presented in this paper. We begin by reviewing the definition of monoidal functors as represented in Haskell. The built-in type class Functor models functors from Hask to Hask.

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

That is, instances of Functor are required to supply a function fmap that lifts functions from a to b to functions from f a to f b. To allow formlenses to both produce and consume values, we will work with functors from Lens to Hask, where Lens is the category of (asymmetric) lenses,

```haskell
data Lens a b = Lens { get :: a -> b, put :: Maybe a -> b -> a }
```

where get and put must satisfy:

- `put (Just a) (get a) = a` -- GetPut
- `get (put (Just a) b) = b` -- PutGet
- `get (put Nothing b) = b` -- CreateGet

It is straightforward to show that Lens has an identity and is closed under composition, and therefore forms a category.
We model functors from \textit{Lens} to \textit{Hask} using the following type class:

\begin{verbatim}
class LFunctor f where
 lmap :: Lens a b -> f b -> f a
\end{verbatim}

For technical reasons, we use the contravariant formulation: given a lens from \(a\) to \(b\), an \textit{LFunctor} \(f\) maps an \(f b\) to \(a\). As we shall see below, this will allow us to use a \textit{Lens} \(a\) to transform a formlens on \(b\) values into one on \(a\) values.

The \textit{Lens} category has monoidal structure, meaning that it supports the following operations:

\begin{verbatim}
class Category c => MonoidalCategory c where
 (· × ·) :: c a1 b1 -> c a2 b2 -> c (a1,a2) (b1,b2)
 munitl :: Iso c ((),a) a
 munitr :: Iso c (a,()) a
 massoc :: Iso c (a,(b,d)) ((a,b),d)
\end{verbatim}

Here, \(\text{Iso } c\ a\ b\) is simply a pair of maps \(c\ a\ b\) and \(c\ b\ a\) witnessing an isomorphism. Monoidal categories are also required to satisfy several additional laws (see MacLane [Mac98]), which all hold for \textit{Lens} and are elided here.

Next, we consider monoidal functors\(^2\) providing a unit and binary operations,

\begin{verbatim}
class Functor f => Monoidal f where
 unit :: f ()
 (⋆) :: f a -> f b -> f (a,b)
\end{verbatim}

and satisfying the following laws:

\[
\text{fmap } (g \times h) (u \star v) = \text{fmap } g u \star \text{fmap } h u \\
\text{fmap } \text{fst} (u \star \text{unit}) = u \\
\text{fmap } \text{assoc} (u \star (v \star w)) = (u \star v) \star w \\
\text{fmap } \text{snd} (\text{unit} \star u) = u
\]

Note that these definitions assume we are working in \textit{Hask}, as well as operations \(\text{fst} :: (a,b) -> a\) and \(\text{snd} :: (a,b) -> b\), which are not available in all monoidal categories. Since we are interested in functors from \textit{Lens} to \textit{Hask}, a minor variant (adapted from MacLane [Mac98]) suffices:

\[
\begin{align*}
\text{(M1)} & \quad \text{lmap } (f \times g) (u \star v) = \text{lmap } f u \star \text{lmap } g u \\
\text{(M2)} & \quad \text{lmap } \text{munitl} (\text{unit} \star u) = u \\
\text{(M3)} & \quad \text{lmap } \text{munitr} (u \star \text{unit}) = u \\
\text{(M4)} & \quad \text{lmap } \text{massoc} (u \star (v \star w)) = (u \star v) \star w
\end{align*}
\]

We are now in a position to define the \textit{Formlens} type and show that it is a monoidal functor:

\[
\text{type } \text{Formlens } a = \text{Maybe } a \rightarrow [\text{Int}] \rightarrow (\text{Html}, \text{Env} \rightarrow \text{Maybe } a, [\text{Int}])
\]

\(^2\) Some authors, such as McBride and Paterson, call these \textit{lax monoidal functors} to distinguish them from other kinds of monoidal functors, but these distinctions are unimportant in this paper so we will just say \textit{monoidal}.
The differences between this definition and the standard definition for formlets are relatively minor: we have added an extra `Maybe a` parameter that provides an optional initial value of the form, changed the namesource to a list of integers, and allowed the `collect` function to return an optional value. However, the type variable `a` appears both covariantly and contravariantly, which means that `Formlens` cannot be an ordinary Haskell functor, let alone an applicative functor. Hence, we are forced to consider formlenses as functors on `Lens`, whose arrows reflect their bidirectionality. But then since `Lens` is not closed, formlenses cannot be applicative functors. Fortunately, we will be able to show they are monoidal functors, which are weaker than applicative functors but still provide an interface that supports composition of formlenses.

As a first step, we show that `Formlens` are lens functors:

```haskell
instance LFunctor Formlens where
  lmap lns f = Formlens (\v i \rightarrow let (html, c, i') = f (fmap (get l) v) i in (html, fmap (put l v) \circ c, i'))
```

When we map a lens `lns :: Lens a b` over a formlens `f :: Formlens b`, to obtain a `Formlens a`, we render `f` using the lens’s `get` function (to transform the `a` value to a `b`), then we post-compose the function `c` with the lens’s `put` function applied to the original `a`. Note that this construction would not work with covariant `LFunctors`, because given `lns :: Lens a b` and `f :: Formlens a`, and an `a` value, there would be no way to use `lns`’s `put` function to construct an appropriate `a` value to use as argument to `f`.

Next we show that `Formlens` admits monoidal operations:

```haskell
instance Monoidal Formlens where
  unit = Formlens (\_ i \rightarrow (noHtml, \_ \rightarrow Just (), i))
  f \star g = Formlens (\_ v i \rightarrow let (a,b) = split v in
    let (ha,ca,i') = f a i
        (hb,cb,i'') = g b i''
    in (h1 ++ h2, \_ \rightarrow liftM2 (,) (ca e) (cb e), i''))
  where split v = case v of (Just (a,b)) \rightarrow (Just a, Just b)
    _ \rightarrow (Nothing, Nothing)
```

That is, `unit` generates no HTML, allocates no names, and collects `()`, whereas `f \star g` combines two formlenses that separately handle an `a` and a `b` to obtain one that handles a pair of `a` and `b` by concatenating the rendered HTML and using the two `collect` functions to form the result. The following theorem states that this definition satisfies the monoidal functor laws:

Theorem 1 `Formlens` is a monoidal `LFunctor`.

Example. To get a taste for formlenses, let us build a bidirectional version of the `dateForm` formlet from the introduction starting with formlens versions of `html`, `text`, and `inputInt`:

```haskell
htmlL :: Html \rightarrow Formlens ()
htmlL h = Formlens (\_ i \rightarrow (h, \_ \rightarrow Just (), i))

textL :: String \rightarrow Formlens ()
```

Proc. BX 2013 8 / 21
textL s = htmlL (stringToHtml s)

inputIntL :: Formlens Int
inputIntL = Formlens (λv i@(h:t) →
 let n = intercalate "_" (map show i) in
 inputTag { name = n, value = (maybe "" show v) },
 λe → fmap read (lookup n e),
 (h+1):t)

Note that the collect functions for these combinators ignore the initial value, if any—i.e., the formlens is essentially bijective. The only situation where this does not happen is when we lmap a lens over a formlens. In this case, only a projection of the initial value is displayed on the form, and the part that was projected out is restored from the initial value when the form is collected.

Next we define two helper operators, (⟨⋆⟩ and ⟨⋆⟩), which streamline definitions where we combine formlenses on () values. These operators behave like (⋆) but combine a Formlens a and Formlens () into a Formlens a, rather than a Formlens (a, ()) and Formlens ((),a) respectively.

(⟨⋆⟩ :: (Monoidal f, LFunctor f) ⇒ f a → f () → f a
f ⟨⋆g⟩ = lmap (munitr :: Iso Lens (a, ()) a) (f ∗ g)

The definition of the (⟨⋆⟩) combinator is symmetric, but eliminates the () value using munitl.

Next, we define a lens on Date values:

dateL :: Lens (Int, Int) Date
dateL = Lens (λ(m, d) → Date m d) (λ(Date m d) → (m, d))

Finally, putting all these pieces together, we define a formlens for Dates as follows:

dateFormlens :: Formlens Date
dateFormlens = lmap dateL (textL "Month: " * inputIntL (* htmlL brTag (*
textL "Day: " * inputIntL (* htmlL brTag)

Compared to the formlet dateForm, we have replaced (⊗) with (⋆), (⟨⋆⟩, and (⋆)) as appropriate, and applied lmap dateL at the top-level. Overall, dateFormlens maps bidirectionally between a Date value and an HTML form that encodes a date, as desired.

Semantic Properties Classic lenses satisfy natural well-behavedness conditions such as the GETPUT and PUTGET laws. A natural question to ask is: are there analogous laws for formlenses, and are they preserved by operations such as (⋆) and lmap?

To answer this question positively, we must restrict our attention to formlenses that satisfy certain well-formedness properties: a formlens should only draw names from the namesource provided as an argument, and the collect function should only look up corresponding names.

Let extract be a function from Html to Env that extracts an environment containing the names and values of all form fields from an HTML document. Also, for every formlens f and namesources n, n', define an equivalence relation on Env values as follows:

\[e \sim_f n e' \iff \forall v :: \text{Maybe } a. \ (_, c, _) = f v n \text{ and } (_, c', _) = f v n' \text{ implies } c e = c' e' \]
We say that a formlens f is well behaved if it satisfies the following properties, which are analogous to GETPUT and PUTGET (the property for CREATEGET is similar):

Definition 1 (Acceptability) A formlens $f :: \text{Formlens } a$ is acceptable if for all $v :: a, n :: \text{Int},$ and $e :: \text{Env},$ if $(h, c, _) = f (\text{Just } v) n$ and $\text{extract } h \subseteq e,$ then $c e = \text{Just } v.$

Definition 2 (Consistency) A formlens $f :: \text{Formlens } a$ is consistent if for all $v :: a, v' :: \text{Maybe } a,$ $n, n' :: \text{Int},$ and $e :: \text{Env},$ if $(_, c, _) = f v' n'$ and $c e = (\text{Just } v)$ and $(h, _, _) = f (\text{Just } v) n,$ then $\text{extract } h \sim f e.$

Readers familiar with lenses may note that these properties are essentially the quotient lens laws [FPP08]. Each of the primitive formlenses described in the next section satisfies these laws, and each of the formlens combinators preserves them.

3 Implementation

We have developed an implementation of formlenses in Haskell. This implementation provides a collection of formlens primitives and a translation from a higher-level syntax based on linear patterns into these primitives, and it runs on top of the Happstack Web server [Hap12].

Combinator library. Our formlens combinator library provides a rich collection of formlens primitives and formlens combinators that allow a wide variety of data to be presented on the Web. The library includes primitives for building forms containing integers, strings, booleans, checkboxes, radio groups, buttons, and other values as HTML. It also includes combinators for combining smaller formlenses into larger ones. Most important are the following:

$\ast :: \text{Formlens } a \rightarrow \text{Formlens } b \rightarrow \text{Formlens } (a, b)$

$\oplus :: \text{Formlens } a \rightarrow \text{Formlens } b \rightarrow \text{Formlens } (\text{Either } a b)$

$\text{iter} :: \text{Formlens } a \rightarrow \text{Formlens } [a]$
The \star operator composes formlenses “horizontally” using the monoidal functor interface discussed in the previous section. The \oplus operator behaves like a conditional operator on formlenses that branches on the Left and Right tags attached to Either values. Finally, the iter operator iterates a lens over a list of values. This operator turns out to be especially interesting due to the way it uses namesources—to allow in-place modifications to the list on the HTML side, it is convenient to make the namesource a list of integers rather than a single integer. The definitions of the \oplus and iter combinators are presented in appendix B.

To showcase the use of these combinators, we have built a website for viewing and editing a database of Speakers as shown in Figure 2. The main functionality of this formlens is given by applying iter to the formlens for Speaker values. The formlens also introduces appropriate HTML rendering and uses a JavaScript library to allow the collect function to be invoked through an AJAX interface instead of (slower) POST requests. In addition, the list allows elements to be added or removed from any location, and also edited in place.

Linear patterns. Writing programs using combinators can be extremely tedious because the structure of the values produced (and consumed) by the formlens closely matches the structure of the combinator program itself. For example, if f is a Formlens \ Int and g is a Formlens () then $f \star g$ is a $\text{Formlens (\ Int, ())}$. If the programmer wishes to obtain a Formlens \ Int instead, they must lmap the bijection munitr on the result to eliminate the spurious $(\)$. Of course, the derived $\langle \star \rangle$ operator does this, but having to remember when to use \star versus $\langle \star \rangle$ and \star is inconvenient.

This section describes a better alternative: we define a syntax for describing formlenses based on pattern matching, and we give a translation from this high-level syntax into our low-level formlens combinators. Our translation extends previous work by Cooper et al. [CLWY08] on translating formlet syntax into combinators using applicative functors. We have implemented this syntax using Haskell’s quasi-quotation features [Mai07] and Template Haskell [SJ02].

To describe a formlens using the high-level syntax, the programmer defines a pair of patterns over a shared set of variables. The pattern on the left matches Haskell values, while the pattern on the right matches HTML. When read from left to right, programs written in this way denote transformations from values to HTML forms; when read from right to left, they denote transformations from form responses back to values.

Formally, we define a formlens using the syntax $[[\text{formlens} | p \leftrightarrow n_1 \ldots n_k]]$, where p is a Haskell pattern and ns is a sequence of elements $<t\, \text{atts}>n_1 \ldots n_k</t>$, text nodes s, spliced HTML expressions $\{ e \}$, or nested formlens bindings $\{ f \rightarrow p \}$. The complete syntax is given in the top half of Figure 3. The pattern p may bind some of the variables referenced in ns and ignore others (by using the wildcard symbol _). However, to ensure that the overall formlens is well-defined, the pattern must be linear—variables mentioned in the pattern and any sub-formlenses must be used exactly once on the other side.

The bottom half of Figure 3 defines the translation from the high-level syntax into combinators. The translation of the body using $(-)^\oplus$ goes by structural recursion, producing formlens combinators such as textL, htmlL, and tagL as results. Sequences of nodes are combined using the $\langle \star \rangle$ operator and unit, which handles the empty sequence. On the other side, we extract patterns from the form using $(-)^\dagger$, again following a straightforward structural recursion. Next, the lens functor map operation lmap is used to combine the results of the sub-lens bound in the body.
Meta variables

- e Haskell expression
- s string literal
- t HTML tag
- p Haskell pattern
- $atts$ HTML attribute list

Syntax

\[
\begin{align*}
l &::= [\text{formlens} \mid p \leftrightarrow ns] \quad \text{(Formlens)} \\
n &::= <t\ atts>ns</t> \mid s \mid \{e\} \mid \{f \to p\} \quad \text{(HTML node)} \\
ns &::= n_1 \ldots n_k \quad \text{(HTML node sequence)}
\end{align*}
\]

<table>
<thead>
<tr>
<th>s°</th>
<th>e°</th>
<th>f°</th>
<th>$<t\ atts>ns</t>^\circ$</th>
<th>$(n_1 \ldots n_k)^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$textL\ s$</td>
<td>$htmlL\ e$</td>
<td>f</td>
<td>$tagL\ t\ atts\ ns^\circ$</td>
<td>$n_1^\circ \ast \ldots \ast n_k^\circ$</td>
</tr>
<tr>
<td>s^\dagger</td>
<td>e^\dagger</td>
<td>f^\dagger</td>
<td>$<t\ atts>ns</t>^\dagger$</td>
<td>$(n_1 \ldots n_k)^\dagger$</td>
</tr>
<tr>
<td>$()$</td>
<td>$()$</td>
<td>p</td>
<td>$(ns)^\dagger$</td>
<td>$(n_1^\dagger, \ldots, n_k^\dagger)$</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
-x^\prec & = (x, x, \perp) \quad \text{where } x \text{ is fresh} \\
x^\prec & = (-, x, x) \\
(p_1, \ldots, p_k)^\prec & = ((p_1', \ldots, p_k'), (e_1, \ldots, e_k), (e_1', \ldots, e_k')) \quad \text{where } (p_i', e_i, e_i') = p_i^\prec, \ 1 \leq i \leq k \\
(K\ p)^\prec & = (K\ p', K\ e, K\ e') \quad \text{where } (p', e, e') = p^\prec
\end{align*}
\]

\[
[\text{formlens} \mid p \leftrightarrow ns] = \text{lmap} (\text{Lens get put}) (ns)^\circ
\]

where

\[
\begin{align*}
(p_{\text{old}}, p_{\text{new}}, p_{\text{create}}) & = p^\prec \\
get & = \lambda p \to (ns)^\dagger \\
put & = \lambda e \to (ns)^\dagger \\
\text{case } e & \text{ of} \\
\text{Just } p_{\text{old}} & \to p_{\text{new}} \\
\text{Nothing} & \to p_{\text{create}}
\end{align*}
\]

Figure 3: Linear pattern syntax and translation.
through extracted patterns. Finally, we construct a lens to pre-compose with the generated form, which means we need to construct an appropriate put function. As we are now mapping a lens over the formlens, we must construct a put function taking an extra argument representing the original input value. The pattern p_{old} binds the parts of the original input value that are ignored by the formlens. The pattern p_{new} (which is also an expression as it contains no wildcards) combines the ignored part of the input bound by p_{old} with the output produced by the formlens. Any wildcard patterns that appear in the interface pattern are filled in using the additional argument to put. If no wildcards appear in the pattern, then the lens we construct is essentially a (partial) bijection—the linearity constraint guarantees that the form data is in bijective correspondence with the pattern data.

As a simple example, suppose we want a form, based on the Speaker example from the introduction, that only allows us to see and edit the date of a speaker, while maintaining the name, then we can write the following code,

\[
speakerFormL :: \text{Formlens Speaker} = \begin{array}{c}
\text{formlens | Speaker} \rightarrow \text{d} \leftrightarrow \\
\text{Name} : \{\text{stringToHtml name}\} < \text{br} / > \\
\text{dateFormL} \rightarrow \text{d} \end{array}
\]

which translates into,

\[
speakerFormL = \text{lmap (Lens (\lambda \text{Speaker} _ d \rightarrow ((),(),(),d)))} \\
(\lambda p0 (((),(),(),d))) \rightarrow \text{case p0 of} \\
\text{Just (Speaker } x0 _ \rightarrow \text{Speaker } x0 \text{ d}} \\
\text{Nothing } \rightarrow \text{Speaker } \bot \text{ d})
\]

\[
(\text{textL } "\text{Name} : " * \text{htmlL (stringToHtml name)} * \text{tag "br" } [[]] * \text{dateFormL})
\]

where x_0 is a fresh variable that tracks the old name value. The translation handles the tedious tasks of generating the boilerplate lens code to map from the underlying type $(((),(),(),\text{Date})))$ of the formlens body and generating textL and htmlL combinators representing the HTML form components themselves. Overall, programs written using the high-level syntax are both more concise and easier to maintain than the generated code.

4 Related work

Formlets. There is a variety of earlier work on declarative abstractions for web forms. Cooper et al. [CLWY08] first proposed expressing formlets as the composition of several primitive applicative functors, and gives a detailed comparison to prior work. The abstraction in Hanus’s WUI (Web User Interface) library [Han06] has several similarities to the formlenses. In particular, WUI includes a combinator for lifting a bijection to WUIs, similar to our LFunctor Formlens instance (restricted to bijections); however, Hanus did not consider Applicative or Monoidal equational laws on WUIs, nor constructing them as functors over lenses.

Formlets were originally developed as part of Links [CLWY07]. Formlet libraries have since been implemented for Haskell, F#, Scala, OCaml, Racket, and Javascript. Eidhof’s Haskell
Lenses for Web Data

library [Eid08] evolved first into digestive functors [dJ12], and most recently the reform package [SJ12]. The latter integrates with various other libraries, and extends formlets with better support for validation and for separating layout from formlet structure. The F# WebSharper library [BGT11] introduces flowlets, which combine formlets with functional reactive programming [EH97] allowing forms to change dynamically at run-time.

Bidirectional transformations. Languages for describing bidirectional transformations have been extensively studied in recent years; a recent Dagstuhl seminar report [HSST11] presents a comprehensive survey. The original paper on lenses [FGM+07] describes work on databases and programming languages; another more recent survey also discusses work from the software engineering literature [CFH+09]. The XSugar [BMS08] language defines bidirectional transformations between XML documents and strings. Similarly, the biXid [KH06] language specifies essentially bijective conversions between pairs of XML documents. Transformations in both XSugar and biXid are specified using pairs of intertwined grammars, which resemble our high-level pattern syntax. The most closely related work we are aware of is by Rendel et al. [RO10]. They propose using functors over partial isomorphisms to describe invertible syntax descriptions. Our design for formlenses is similar, but also supports using non-bijective bidirectional transformations, while allowing for a convenient high-level syntax similar to formlets.

Applicative and monoidal functors. Applicative functors have been used extensively as an alternative to monads for structuring effectful computation. They were used (implicitly) by Swierstra and Duponcheel [SD96] for parser combinators, and named and recognized as a lighter-weight alternative to monads by McBride and Paterson [MP08]. The relationships among monads, arrows, and applicative functors were further elucidated by Lindley et al. [LWY11]. The connection to monoidal functors was explored further by Paterson [Pat12], who also observes that it is often much easier to work with monoidal functors. However, Paterson focuses attention on functors on cartesian closed categories and Lens is not closed.

Functors on categories other than Hask have appeared in other contexts. Functors over isomorphisms are used in the fclabels library [VHEV12]. However, fclabels also provides an applicative functor interface, which can be used to produce intuitively incorrect bidirectional transformations. Similarly, functors over partial isomorphisms from Iso to Hask are essential in Rendel and Ostermann’s invertible syntax descriptions [RO10]. They also employ a variant of Monoidal functors (which they call ProductFunctors). A natural question for further work is whether Monoidal functors over partial isomorphisms suffice for invertible syntax descriptions, so that one can easily compose parser or pretty-printer combinators with formlenses. To the best of our knowledge, we are the first to use (monoidal) functors over lenses for programming.

5 Conclusion

Formlenses combine the features of formlets and lenses in a powerful abstraction that makes it easy for programmers to present data on the web. Our work on formlenses is ongoing. In the future, we plan to further develop the semantic properties of formlenses, investigate additional combinators and generic programming techniques for formlenses, and examine other formalisms
for Web interaction, such as flowlets [BTG11]. We also plan to investigate ways of interacting with browsers that are not based on forms such as JavaScript. Finally, we plan to explore ways of leveraging the semantic properties of formlenses to obtain efficient mechanisms for maintaining the HTML even as the underlying data changes.

Acknowledgements: The authors wish to thank Arjun Guha, James McKinna, Ross Tate, Philip Wadler, Daniel Wagner, the Cornell DB Group, and the BX ’13 reviewers for helpful comments. This work is supported in part by a Google Research Award (Lindley), EPSRC grant EP/J014591/1 (Lindley), National Science Foundation awards CCF-1253165 and CCF-0964409 (Rajkumar and Foster), a Sloan Research Fellowship (Foster), and a Royal Society University Research Fellowship (Cheney).

Bibliography

[LWY11] S. Lindley, P. Wadler, J. Yallop. Idioms are Oblivious, Arrows are Meticulous,

Pp. 73–82. 2007.

A Monoidal categories and functors

The key to our approach is to use monoidal rather than applicative functors to define form lenses. This section reviews the (mostly standard) definitions for categories and monoidal functors.

Categories. A category is a collection of objects and arrows such that every object has an identity arrow and arrows compose associatively.

\[
\text{class Category } c \text{ where}
\]
\[
\begin{align*}
\text{id} & : : c \, x \, x \\
(\circ) & : : c \, y \, z \rightarrow c \, x \, y \rightarrow c \, x \, z \\
\end{align*}
\]

Here, \(c : \ast \rightarrow \ast \rightarrow \ast \) is a two-argument type constructor, and we can think of \(c \, a \, b \) as the type of arrows from \(a \) to \(b \). The class does not explicitly define the set of types that correspond to objects of the category. The variables \(x \), \(y \), and \(z \) are free type variables, so technically the type of \(\text{id} \) is \(\forall x. c \, x \, x \), that is, the identity arrow can be applied at any type, and similarly \((\circ) \) has type \(\forall x, y, z. c \, y \, z \rightarrow c \, x \, y \rightarrow c \, x \, z \), which means that composition can be applied to any arrows whose range and domain match in the usual way.

Haskell functions, bijections, and lenses each form a category.

\[
\text{instance Category } (\rightarrow) \text{ where}
\]
\[
\begin{align*}
\text{id} & = \lambda x \rightarrow x \\
\text{f} \circ \text{g} & = \lambda x \rightarrow f (g \, x) \\
\end{align*}
\]

\[
\text{instance Category Bij where}
\]
\[
\begin{align*}
\text{id} & = \text{Bij} \, \text{id} \, \text{id} \\
\text{f} \circ \text{g} & = \text{Bij} (\text{fwd} \, \text{f} \circ \text{fwd} \, \text{g}) (\text{bwd} \, \text{g} \circ \text{bwd} \, \text{f}) \\
\end{align*}
\]

\[
\text{instance Category Lens where}
\]
\[
\begin{align*}
\text{id} & = \text{Lens} \, \text{id} \, (\text{const} \, \text{id}) \\
\text{l} \circ \text{m} & = \text{Lens} (\text{get} \, \text{l} \circ \text{get} \, \text{m}) \\
\text{\quad} & (\lambda a \, c \rightarrow \text{put} \, \text{m} \, a \, (\text{put} \, \text{l} \, (\text{get} \, \text{m} \, a) \, c)) \\
\end{align*}
\]

An isomorphism in a category \(c \) is an arrow \(f :: c \, a \, b \) with an “inverse” \(g :: c \, b \, a \) satisfying \(f \circ g = \text{id} = g \circ f \). In a computational setting, it is convenient to represent isomorphisms explicitly.

\[
\text{data Iso } c \, a \, b = \text{Iso} \{ \text{fwdI :: } c \, a \, b, \text{bwdI :: } c \, b \, a \} \\
\]

Isomorphisms are expected to satisfy the following condition:

\[
\text{fwdI iso} \circ \text{bwdI iso} = \text{id} = \text{bwdI iso} \circ \text{fwdI iso} \\
\]

Note that \(\text{Bij} \) is just \(\text{Iso} (\rightarrow) \). However, we will keep the notation separate to avoid confusion.

Monoidal categories. A monoidal category is a category with additional structure, namely a unit and product on objects in the category. For simplicity, we will use the following definition of monoidal categories, which is specialized to Haskell’s unit (\(_ _ \) and pairing types (\(_ \times _ \)) and also includes pairing on \(c \)-arrows (\(c \cdot c \cdot \)) as well as \(c \)-isomorphisms relating unit and pairing:

\[
\text{class Monoidal c where}
\]
\[
\begin{align*}
\text{unit} & : : c \, \emptyset \rightarrow c \\
\text{pair} & : : c \, d \rightarrow c \cdot c \\
\text{unpair} & : : c \cdot c \rightarrow c \, d \\
\text{action} & : : c \cdot (d \times e) \rightarrow (c \cdot d) \times (c \cdot e) \\
\end{align*}
\]

\[
\text{instance Monoidal (\rightarrow) where}
\]
\[
\begin{align*}
\text{unit} & = \lambda x \rightarrow x \\
\text{pair} & = \lambda x \rightarrow \lambda y \rightarrow f x \rightarrow (g y) \\
\text{unpair} & = \lambda a \rightarrow \lambda b \rightarrow f a \rightarrow (g b) \\
\text{action} & = \lambda a \rightarrow \lambda b \rightarrow \lambda c \rightarrow f a \rightarrow (g b) (\text{get} \, \text{c} \circ \text{get} \, \text{c}) \\
\end{align*}
\]

\[
\text{instance Monoidal Bij where}
\]
\[
\begin{align*}
\text{unit} & = \text{Bij} \, \text{id} \, \text{id} \\
\text{pair} & = \text{Bij} (\text{fwd} \, \text{f} \circ \text{fwd} \, \text{g}) (\text{bwd} \, \text{g} \circ \text{bwd} \, \text{f}) \\
\text{unpair} & = \text{Bij} (\text{bwd} \, \text{f} \circ \text{bwd} \, \text{g}) (\text{fwd} \, \text{g} \circ \text{fwd} \, \text{f}) \\
\text{action} & = \text{Bij} (\text{fwd} \, \text{l} \circ \text{fwd} \, \text{m}) (\text{bwd} \, \text{m} \circ \text{bwd} \, \text{l}) \\
\end{align*}
\]

\[
\text{instance Monoidal Lens where}
\]
\[
\begin{align*}
\text{unit} & = \text{Lens} \, \text{id} \, (\text{const} \, \text{id}) \\
\text{pair} & = \text{Lens} \, \text{get} \, \text{l} \circ \text{get} \, \text{m} \circ \text{get} \, \text{n} \\
\text{unpair} & = \text{Lens} \, \text{put} \, \text{l} \circ \text{put} \, \text{m} \circ \text{put} \, \text{n} \\
\text{action} & = \text{Lens} \, \text{get} \, \text{l} \circ \text{get} \, \text{m} \circ \text{get} \, \text{n} \\
\end{align*}
\]
class Category c ⇒ MonoidalCategory c where

(· × ·) :: c a₁ b₁ → c a₂ b₂ → c (a₁,a₂) (b₁,b₂)
munit :: Iso c ((()),a) a
munitr :: Iso c (a,()) a
massoc :: Iso c (a,(b,d)) ((a,b),d)

Monoidal categories are expected to satisfy a number of additional laws, which essentially state that () is a unit with respect to (,) and “all diagrams involving the above operations commute” [Mac98]. We will also omit discussion of the relevant laws of monoidal categories; the standard laws hold for all of the monoidal categories we will consider in this paper.

Haskell types and functions form a monoidal category (→), with the following operations:

instance MonoidalCategory (→) where

f × g = λ(a,b) → (f a,g b)
munit = Iso (λ(((),a) → a) (λa → (((),a)))
munitr = Iso (λ(a,(())) → a) (λa → (a,()))
massoc = Iso (λ(λ(a,(b,d)) → ((a,b),d))
 (λ((a,b),d) → (a,(b,d)))

In fact, any category with finite products is monoidal, but there are many monoidal categories whose monoidal product does not form a full Cartesian product. This is the case, for example, for bijections, since the fst and snd mappings are not bijections; models of linear type theory [Bie95] provide more examples.

Two examples of monoidal categories that are relevant for our purposes are Bij and Lens. For Bij, we first show how to lift isomorphisms on Hask to Bij (there is some redundancy here, which we tolerate for the sake of uniformity):

iso2bij :: Iso (→) a b → Iso Bij a b
iso2bij (Iso to fro) = Iso (Bij to fro) (Bij fro to)

instance MonoidalCategory Bij where

f × g = Bij (λ(a,b) → (fwd f a,fwd g b))
 (λ(fa,gb) → (bwd f fa,bwd g gb))
munit = iso2bij munitl
munitr = iso2bij munitr
massoc = iso2bij massoc

For Lens, we first lift the coercion bij2lens from bijections to lenses to act on isomorphisms:

iso2lens :: Iso Bij a b → Iso Lens a b
iso2lens (Iso to fro) = Iso (bij2lens to) (bij2lens fro)

instance MonoidalCategory Lens where

l₁ × l₂ = l₁ ×ₖ l₂
munit = iso2lens munitl
munitr = iso2lens munitr
massoc = iso2lens massoc
Dual categories. Every category has a dual, obtained by reversing arrows:

```haskell
codef a b = Co \{ \text{unCo} :: c b a \}
```

```haskell
instance Category c ⇒ Category c^op where
  id = Co id
  (Co f) ∘ (Co g) = Co (g ∘ f)
```

The dual of any monoidal category is also monoidal:

```haskell
iso2dual :: Iso c a b → Iso c^op a b
iso2dual (Iso to fro) = Iso (Co fro) (Co to)
```

```haskell
instance MonoidalCategory c ⇒ MonoidalCategory c^op where
  (Co l_1) × (Co l_2) = Co (l_1 × l_2)
  munitl = iso2dual munitl
  munitr = iso2dual munitr
  massoc = iso2dual massoc
```

In particular, \(\text{Lens}^{op} \) is monoidal. This fact will be useful later since \(\text{FormLens} a \) is a contravariant functor from \(\text{Lens} \) to \(\text{Hask} \).

Functors. The built-in Haskell \(\text{Functor} \) type class models functors from \(\text{Hask} \) to \(\text{Hask} \). For our purposes, we will need to generalize its definition slightly\(^3\) to consider functors from other categories (such as \(\text{Bij} \) and \(\text{Lens} \)) to \(\text{Hask} \). Accordingly, we introduce the following type class:

```haskell
class LFunctor f where
  lmap :: Lens a b → f b → f a
```

Again, since we are interested only in \(\text{Hask} \)-valued functors rather than functors between arbitrary categories, this type class is specialized to functors from \(\text{Lens} \) to \(\text{Hask} \).

Monoidal functors. Next, we consider monoidal functors:

```haskell
class Monoidal f where
  unit :: f ()
  (⋆) :: f a → f b → f (a, b)
```

Note that we do not explicitly identify the domain of \(f \) in the type class \(\text{Monoidal f} \); this is not necessary (and leads to typechecking complications due to the unconstrained type variable) since the signature of the operations of a monoidal functor depends only on the codomain category (which for us is always \(\text{Hask} \)). However, in stating the laws for monoidal functors, we will implicitly assume that the domain is a monoidal category—in particular, that \(· × · \), \(\text{munitl} \), \(\text{munitr} \), and \(\text{massoc} \) are defined.

\(^3\) Others have proposed much more general libraries for categorical concepts in Haskell [KW12, Vis11]; we believe our approach could be framed using such a library, but prefer to keep the focus on the needed concepts to retain accessibility to readers not already familiar with these libraries. This is also an appropriate place to mention that correct use of categorical concepts in Haskell requires some additional side-conditions such as avoidance of nontermination; we treat this issue informally.
B Formlens Combinators: \oplus and iter

This section presents definitions of the \oplus and iter formlens combinators in Haskell. We first define several helper functions:

\[
\begin{align*}
\text{makeName} & :: [\text{Int}] \to \text{String} \\
\text{makeName} \ l &= \text{intercalate} \ "_" \ (\text{map} \ \text{show} \ l) \\
\text{readName} & :: \text{String} \to [\text{Int}] \\
\text{readName} \ s &= \text{map} \ \text{read} \ (\text{split} \ "_" \ s) \\
\text{next} & :: [\text{Int}] \to [\text{Int}] \\
\text{next} \ (\text{hd}:\text{tl}) &= (\text{hd} + 1):\text{tl} \\
\text{branch} & :: [\text{Int}] \to [\text{Int}] \\
\text{branch} \ l &= 0: l
\end{align*}
\]

Next we define the \oplus combinator:

\[
(\oplus) :: \text{Formlens} \ a \to \text{Formlens} \ b \to \text{Formlens} \ (\text{Either} \ a \ b)
\]

\[
(f \oplus g) \ v \ t =
\]

\[
\begin{align*}
\text{let} \ s &= \text{makeName} \ t \\
\text{t}' &= \text{next} \ t \ \text{in} \\
\text{let} \ \text{collect} \ ca \ cb \ e &= \text{case} \ \text{lookup} \ s \ e \ \text{of} \\
& \quad \text{Just} \ "\text{left}" \to \text{fmap} \ \text{Left} \ (ca \ e) \\
& \quad \text{Just} \ "\text{right}" \to \text{fmap} \ \text{Right} \ (cb \ e) \\
& \quad - \to \text{Nothing} \ \text{in} \\
\text{case} \ v \ \text{of} \\
& \quad \text{Just} \ (\text{Left} \ a) \to \text{let} \ (ha,ca,tl) = f \ a \ t' \\
& \quad \quad (_,cb,t2) = g \text{Nothing} \ t' \ \text{in} \\
& \quad \quad (\text{hidden} \ s \ "\text{left}" + + + ha,collect \ ca \ cb,\text{max} \ t1 \ t2) \\
& \quad \text{Just} \ (\text{Right} \ b) \to \text{let} \ (_,ca,t1) = f \ \text{Nothing} \ t' \ \text{in} \\
& \quad \quad (hb,cb,t2) = g \ b \ t' \ \text{in} \\
& \quad \quad (\text{hidden} \ s \ "\text{right}" + + + hb,collect \ ca \ cb,\text{max} \ t1 \ t2) \\
& \quad \text{Nothing} \to \text{let} \ (_,ca,t1) = f \ \text{Nothing} \ t' \ \text{in} \\
& \quad \quad (_,cb,t2) = g \text{Nothing} \ t' \ \text{in} \\
& \quad \quad (\text{hidden} \ s \ "\text{nothing}" ,collect \ ca \ cb,\text{max} \ t1 \ t2))
\end{align*}
\]

Finally we define the iter combinator:

\[
\text{iter} :: \text{Formlens} \ a \to \text{Formlens} \ [a] \\
\text{iter} \ f \ v \ t = (\text{render} \ v \ t, \text{collect} \ f \ v \ t, \text{next} \ t))
\]
where $\text{render} \ (\text{Just} \ (hd : tl)) \ t = \text{let} \ t' = \text{branch} \ t \ \text{in}$

\[
\begin{align*}
\text{let} \ (h, _, t'') &= f \ (\text{Just} \ hd) \ t' \ \text{in} \\
\text{hidden} \ (\text{makeName} \ t) \ (\text{makeName} \ t')
\end{align*}
\]

++ \ h ++ \ \text{render} \ (\text{Just} \ tl) \ t''

$\text{render} \ t _ _ _ = \text{hidden} \ (\text{makeName} \ t) \ "\text{none}"$

$\text{collect} \ f \ v \ t \ e = \text{case} \ \text{lookup} \ (\text{makeName} \ t) \ e \ \text{of}$

Nothing \rightarrow Nothing

Just "none" \rightarrow Just []

Just s \rightarrow \text{let} \ t' = \text{readName} \ s \ \text{in}$

\[
\begin{align*}
\text{case} \ v \ \text{of} \\
\text{Just} \ (hd : tl) &\rightarrow \text{let} \ (_, c, t'') = f \ (\text{Just} \ hd) \ t' \ \text{in} \\
&\hspace{1em} \text{do} \ hd' \leftarrow c \ e \\
&\hspace{2em} tl' \leftarrow \text{collect} \ f \ (\text{Just} \ tl) \ t'' \ e \\
&\hspace{3em} \text{return} \ (hd' : tl')
\end{align*}
\]

_ \rightarrow \text{let} \ (_, c, t'') = f \ \text{Nothing} \ t' \ \text{in}$

\[
\begin{align*}
\text{do} \ hd' \leftarrow c \ e \\
&\hspace{1em} tl' \leftarrow \text{collect} \ f \ v \ t'' \ e \\
&\hspace{2em} \text{return} \ (hd' : tl')
\end{align*}
\]