Proceedings of the
Automated Verification of Critical Systems
(AVoCS 2013)

Simplifying proofs of linearisability using layers of abstraction

Brijesh Dongol and John Derrick

15 pages
Simplifying proofs of linearisability using layers of abstraction

Brijesh Dongol and John Derrick

Department of Computer Science
The University of Sheffield, S1 4DP, UK
B.Dongol@sheffield.ac.uk, J.Derrick@dcs.shef.ac.uk

Abstract: Linearisability has become the standard correctness criterion for concurrent data structures, ensuring that every history of invocations and responses of concurrent operations has a matching sequential history. Existing proofs of linearisability require one to identify so-called linearisation points within the operations under consideration, which are atomic statements whose execution causes the effect of an operation to be felt. However, identification of linearisation points is a non-trivial task, requiring a high degree of expertise. For sophisticated algorithms such as Heller et al’s lazy set, it even is possible for an operation to be linearised by the concurrent execution of a statement outside the operation being verified. This paper proposes a method for verifying linearisability that does not require identification of linearisation points. Instead, using an interval-based logic, we show that every behaviour of each concrete operation over any interval is a possible behaviour of a corresponding abstraction that executes with coarse-grained atomicity. This approach is applied to Heller et al’s lazy set to show that verification of linearisability is possible without having to consider linearisation points within the program code.

Keywords: Linearisability, Interval-based verification, Fine-grained atomicity

1 Introduction

Development of correct fine-grained concurrent data structures has received an increasing amount of attention over the past few years as the popularity of multi/many-core architectures has increased. An important correctness criterion for such data structures is linearisability [HW90], which guarantees that every history of invocations and responses of the concurrent operations on the data structure can be rearranged without violating the ordering within a process such that the rearranged history is a valid sequential history. A number of proof techniques developed over the years match concurrent and sequential histories by identifying an atomic linearising statement within the concrete code of each operation, whose execution corresponds to the effect of the operation taking place. However, due to the subtlety and complexity of concurrent data structures, identification of linearising statements within the concrete code is a non-trivial task, and it is even possible for an operation to be linearised by the execution of other concurrent operations. An example of such behaviour occurs in Heller et al’s lazy set algorithm, which implements a set as a sorted linked list [HHL+07] (see Fig. 1). In particular, its contains operation may be linearised by the execution of a concurrent add or remove operation and the precise location of the linearisation point is dependent on how much of the list has been traversed by the contains operation. In this paper, we present a method for simplifying proofs of linearisability using Heller
et al’s lazy set as an example.

An early attempt at verifying lineairisability of Heller et al’s lazy set is that of Vafeiadis et al, who extend each linearising statement with code corresponding to the execution of the abstract operation so that execution of a linearising statement causes the corresponding abstract operation to be executed [VHHS06]. However, this technique is incomplete and cannot be used to verify the contains operation, and hence, its correctness is only treated informally [VHHS06]. These difficulties reappear in more recent techniques: “In [Heller et al’s lazy set] algorithm, the correct abstraction map lies outside of the abstract domain of our implementation and, hence, was not found.” [Vaf10]. The first complete lineairisability proof of the lazy set was given by Colvin et al [CGLM06], who map the concrete program to an abstract set representation using simulation to prove data refinement. To verify the contains operation, a combination of forwards and backwards simulation is used, which involves the development of an intermediate program IP such that there is a backwards simulation from the abstract representation to IP, and a forwards simulation from IP to the concrete program. More recently, O’Hearn et al use a so-called hindsight lemma (related to backwards simulation) to verify a variant of Heller’s lazy set algorithm [ORV+10]. Derrick et al use a method based on non-atomic refinement, which allows a single atomic step of the concrete program to be mapped to several steps of the abstract [DSW11].

Application of the proof methods in [VHHS06, CGLM06, ORV+10, DSW11] remains difficult because one must acquire a high degree of expertise of the program being verified to correctly identify its linearising statements. For complicated proofs, it is difficult to determine whether the implementation is erroneous or the linearising statements have been incorrectly chosen. Hence, we propose an approach that eliminates the need for identification of linearising statements in the concrete code by establishing a refinement between the fine-grained implementation and an abstraction that executes with coarse-grained atomicity [DD12]. The idea of mapping fine-grained programs to a coarse-grained abstraction has been proposed by Groves [Gro08] and separately Elmas et al [EQS+10], where the refinements are justified using reducation [Lip75]. However, unlike our approach, their methods must consider each pair of interleavings, and hence, are not compositional. Turon and Wand present a method of abstraction in a compositional rely/guarantee framework with separation logic [TW11], but only verify a stack algorithm that does not require backwards reasoning.

Capturing the behaviour of a program over its interval of execution is crucial to proving lineairisability of concurrent data structures. In fact, as Colvin et al point out: “The key to proving that [Heller et al’s] lazy set is lineairisable is to show that, for any failed contains(x) operation, x is absent from the set at some point during its execution.” [CGLM06]. Hence, it seems counterintuitive to use logics that are only able to refer to the pre and post states of each statement (as done in [VHHS06, CGLM06, DSW11, Vaf10]). Instead, we use a framework based on [DDH12] that allows reasoning about the fine-grained atomicity of pointer-based programs over their intervals of execution. By considering complete intervals, i.e., those that cover both the invocation and response of an operation, one is able to determine the future behaviour of a program, and hence, backwards reasoning can often be avoided. For example, Báumler et al [BSTR11] use an interval-based approach to verify a lock-free queue without resorting to backwards reasoning, as is required by frameworks that only consider the pre/post states of a statement [DGLM04]. However, unlike our approach, Báumler et al must identify the linearising statements in the concrete program, which is a non-trivial step.

2
An important difference between our framework and those mentioned above is that we assume a truly concurrent execution model and only require interleaving for conflicting memory accesses [DD12, DDH12]. Each of the other frameworks mentioned above assume a strict interleaving between program statements. Thus, our approach captures the behaviour of program in a multicore/multiprocessor architecture more faithfully.

The main contribution of this paper is the use of the techniques in [DD12] to simplify verification of a complex set algorithm [HHL+07]. This algorithm presents a challenge for linearisability because the linearisation point of the contains operation is potentially outside the operation itself [DSW11]. We propose a method in which the proof is split into several layers of abstraction so that linearisation points of the fine-grained implementation need not be identified. As summarised in Fig. 3, one must additionally prove that the coarse-grained abstraction is linearisable, however, due to the coarse granularity of atomicity, the linearising statements are straightforward to identify and the linearisability proof itself is simpler [DD12]. Other contributions of this paper include a method for reasoning about truly concurrent program executions and an extension of the framework in [DDH12] to enable reasoning about pointer-based programs, which includes methods for reasoning about expressions non-deterministically [HBDJ13].

2 A list-based concurrent set

Heller et al [HHL+07] implement a set as a concurrent algorithm operating on a shared data structure (see Fig. 1) with operations add and remove to insert and delete elements from the set, and an operation contains to check whether an element is in the set. The concurrent
The implementation uses a shared linked list of node objects with fields val, nxt, mrk, and lck, where val stores the value of the node, nxt is a pointer to the next node in the list, mrk denotes the marked bit and lck stores the identifier of the process that currently holds the lock to the node (if any) [HHL+07]. The list is sorted in strictly ascending values order (including marked nodes).

Operation locate(x) is used to obtain pointers to two nodes whose values may be used to determine whether or not x is in the list — the value of the predecessor node pred must always be less than x, and the value of the current node curr may either be greater than x (if x is not in the list) or equal to x (if x is in the list). Operation add(x) calls locate(x), then if x is not already in the list (i.e., value of the current node n3 is strictly greater than x), a new node n2 with value field x is inserted into the list between n1 and n3 and true is returned. If x is already in the list, the add(x) operation does nothing and returns false. Operation remove(x) also starts by calling locate(x), then if x is in the list the current node n2 is removed and true is returned to indicate that x was found and removed. If x is not in the list, the remove operation does nothing and returns false. Note that operation remove(x) distinguishes between a logical removal, which sets the marked field of n2 (the node corresponding to x), and a physical removal, which updates the nxt field of n1 so that n2 is no longer reachable. Operation contains(x) iterates through the list and if a node with value greater or equal to x is found, it returns true if the node is unmarked and its value is equal to x, otherwise returns false.

The complete specification consists of a number of processes, each of which may execute its operation on the shared data structure. For the concrete implementation, therefore, the set operations can be executed concurrently by a number of processes, and hence, the intervals in which the different operations execute may overlap. Our basic semantic model uses interval predicates (see Section 3), which allows formalisation of a program’s behaviour with respect to an interval (which is a contiguous set of times), and an infinite stream (that maps each time to a state). For example, consider Fig. 2, which depicts an execution of the lazy set over interval Δ in stream s, a process p that executes a contains(x) that returns true over Δp, a process q that executes remove(x) and add(y) over intervals Δq and Δ′q, respectively, and a process u that executes add(x) over interval Δu. Hence, the shared data structure may be changing over Δp while process p is checking to see whether x is in the set.

Correctness of such concurrent executions is judged with respect to linearisability, the crux of which requires the existence of an atomic linearisation point within each interval of an operation’s execution, corresponding to the point at which the effect of the operation takes place.
The ordering of linearisation points defines a sequential ordering of the concurrent operations and linearisability requires that this sequential ordering is valid with respect to the data structure being implemented. For the execution in Fig. 2, assuming that the set is initially empty, because \texttt{contains(x)} returns \texttt{true}, a valid linearisation corresponds to a sequential execution \texttt{Seq}_1 \equiv \texttt{add(x)}; \texttt{contains(x)}; \texttt{remove(x)}; \texttt{add(y)} obtained by picking linearisation points within \Delta_u, \Delta_p, \Delta_q and \Delta'_q in order. Note that a single concurrent history may be linearised by more than one valid sequential history, e.g., the execution in Fig. 2 can correspond to the sequential execution \texttt{Seq}_2 \equiv \texttt{remove(x)}; \texttt{add(x)}; \texttt{contains(x)}; \texttt{add(y)}. The abstract sets after completion of \texttt{Seq}_1 and \texttt{Seq}_2 are \{y\} and \{x,y\}, respectively. Unlike \texttt{Seq}_1, operation \texttt{remove(x)} in \texttt{Seq}_2 returns \texttt{false}. Note that a linearisation of \Delta'_q cannot occur before \Delta_q because \texttt{remove(x)} responds before the invocation of \texttt{add(y)}.

Herlihy and Wing formalise linearisability in terms of histories of invocation and response events of the operations on the data structure in question [HW90]. Reasoning about such histories directly is infeasible, and hence, existing methods (e.g., [CGLM06, DSW11, VHHS06]) prove linearisability by identifying an atomic linearising statement within the operation being verified and showing that this statement can be mapped to the execution of a corresponding abstract operation. However, due to the fine granularity of the atomicity and inherent non-determinism of concurrent algorithms, identification of such a statement is difficult. The linearising statement for some operations may actually be outside the operation, e.g., none of the statements \texttt{C1}-\texttt{C5} are valid linearising statements of \texttt{contains(x)}; instead \texttt{contains(x)} is linearised by the execution of a statement within \texttt{add(x)} or \texttt{remove(x)} [DSW11].

As summarised in Fig. 3, we decompose proofs of linearisability into two steps, the first of which proves that a fine-grained implementation refines a program that executes the same operations but with coarse-grained atomicity. The second step of the proof is to show that the abstraction is linearisable. The atomicity of a coarse-grained abstraction cannot be guaranteed in hardware (without the use of contention inducing locks), however, its linearisability proof is much simpler [DDH12]. Because we prove behaviour refinement, any behaviour of the fine-grained implementation is a possible behaviour of the coarse-grained abstraction, and hence, an implementation is linearisable whenever the abstraction is linearisable. Our technique does not require identification of the linearising statements in the implementation.

A possible coarse-grained abstraction of \texttt{contains(x)} is an operation that is able to test whether \texttt{x} is in the set in a single atomic step (see Fig. 6), unlike the implementation in Fig. 1, which uses a sequence of atomic steps to iterate through the list to search for a node with value \texttt{x}. Therefore, as depicted in Fig. 2, an execution of \texttt{contains} that returns \texttt{true}, i.e., \texttt{C1}; (\texttt{C2}; \texttt{C3})^\texttt{ω}; \texttt{C4}; \texttt{return true}, is required to refine a coarse-grained abstraction \langle x \in absSet \rangle; \texttt{return true}, where \texttt{C1} - \texttt{C4} are the labels of \texttt{contains} in Fig. 1 and \langle x \in absSet \rangle is a guard that is atomically able to test whether \texttt{x} is in the abstract set. In particular, \langle x \in absSet \rangle holds in an interval \Omega and stream \texttt{s} iff there is a time \texttt{t} in \Omega such that \texttt{x} \in absSet.(s.t). Streams are formalised in Section 3. Note that both \langle x \in absSet \rangle and \langle x \notin absSet \rangle may hold within \Delta_p; the refinement in Fig. 2 would only be invalid if for all \texttt{t} \in \Delta_p, \texttt{x} \notin absSet.(s.t) holds.

Proving refinement between a coarse-grained abstraction and an implementation is non-trivial due to the execution of other (interfering) concurrent processes. Furthermore, our execution model allows non-conflicting statements (e.g., concurrent writes to different locations) to be executed in a truly concurrent manner. We use compositional rely/guarantee-style reasoning
we define \(\text{eval} \) the value at address \(p \). Programs, for an address-valued expression \(e \), the abstract syntax of a command is given by

\[
\text{Cmd} := \text{Idle} \mid \langle \sigma \rangle \mid \langle c \rangle \mid \text{vae} := e \mid C_1 ; C_2 \mid C_1 \cap C_2 \mid C^\omega \mid \mathbf{||}_{p,P} C_p \mid \mathbf{[}[Z \mid C] \mid l:C
\]

\(\text{Cmd} \) denotes the set of process ids, \(\mathbf{[}[Z \mid C] \) the context \(Z \) is the set of variables that \(C \) may modify.

Figure 4: Formal model of the lazy set operations

[Jon83] to formalise the behaviour of the environment of a process and allow the execution of an arbitrary number of processes in the environment. Note that unlike Jones [Jon83], who assumes rely conditions are two-state relations, rely conditions in our framework are interval predicates that are able to refer to an arbitrary number of states because the size of the interval is not fixed.

3 Interval-based framework

To simplify reasoning about the linked list structure of the lazy list, the domain of each state distinguishes between variables and addresses. We use a language with an abstract syntax that closely resembles program code, and use interval predicates to formalise interval-based behaviour. Fractional permissions are used to control conflicting accesses to shared locations.

Commands. We assume variable names are taken from the set \(\text{Var} \), values have type \(\text{Val} \), addresses have type \(\text{Addr} \equiv \mathbb{N} \), \(\text{Var} \cap \text{Addr} = \emptyset \) and \(\text{Addr} \subseteq \text{Val} \). A state over \(\text{VA} \subseteq \mathbb{Var} \cup \text{Addr} \) has type \(\text{State}_{\text{VA}} \equiv \text{VA} \rightarrow \text{Val} \) and a state predicate has type \(\text{State}_{\text{VA}} \rightarrow \mathbb{B} \).

The objects of a data structure may contain fields, which we assume are of type \(\text{Field} \). We assume that every object with \(m \) fields is assigned \(m \) contiguous blocks of memory and use \(\text{offset} : \text{Field} \rightarrow \mathbb{N} \) to obtain the offset of \(f \in \text{Field} \) within this block [Vaf07], e.g., for the fields of a node object, we assume that \(\text{offset.val} = 0, \text{offset.nxt} = 1, \text{offset.mrk} = 2 \) and \(\text{offset.lck} = 3 \).

We assume the existence of a function \(\text{eval} \) that evaluates a given expression in a given state. The full details of expression evaluation are elided. To simplify modelling of pointer-based programs, for an address-valued expression \(ae \), we introduce expressions \(\ast ae \), which returns the value at address \(ae \), \(ae.f \), which returns the address of \(f \) with respect to \(ae \). For a state \(\sigma \), we define \(\text{eval}(*ae) \cdot \sigma \equiv \sigma \cdot (\text{eval}ae . \sigma) \) and \((ae.f) . \sigma \equiv \text{eval}ae \cdot \sigma + \text{offset} f \). We also define shorthand \(ae.f \equiv * (ae.f) \), which returns the value at \(ae.f \) in state \(\sigma \).

Assuming that \(\text{Proc} \) denotes the set of process ids, for a set of variables \(Z \), state predicate \(c \), variable or address-valued expression \(vae \), expression \(e \), label \(l \), and set of processes \(P \subseteq \text{Proc} \), the abstract syntax of a command is given by \(\text{Cmd} \) below, where \(C, C_1, C_2, C_p \in \text{Cmd} \).

\[
\text{Cmd} := \text{Idle} \mid \langle \sigma \rangle \mid \langle c \rangle \mid \text{vae} := e \mid C_1 ; C_2 \mid C_1 \cap C_2 \mid C^\omega \mid \mathbf{||}_{p,P} C_p \mid \mathbf{[}[Z \mid C] \mid l:C
\]
A formalisation of part of the lazy set [HHL+07] using the syntax above is given in Fig. 4, where \(P \subseteq \text{Proc} \). Operations \(\text{add}(x) \), \(\text{remove}(x) \) and \(\text{contains}(x) \) executed by process \(p \) are modelled by commands \(\text{Add}(p, x) \), \(\text{Remove}(p, x) \) and \(\text{Contains}(p, x) \), respectively. We assume that \(n \mapsto (vv, nn, mm, ll) \) denotes \((n \mapsto \text{val} = vv) \land (n \mapsto \text{nxt} = nn) \land (n \mapsto \text{mark} = mm) \land (n \mapsto \text{lock} = ll) \). Details of \(\text{Add}(p, x) \) and \(\text{Remove}(p, x) \) are elided and the RELY construct is formalised in Section 5. Note that unlike the methods in [CGLM06, DSW11], where labels identify the “\(\text{curr.val} \)” and \(\text{curr.mark} \) of a stream, we use \(\text{interval predicates} \) to refer to the states outside a given interval. We assume pointwise lifting of operators of operators on interval predicates, e.g., if \(g \) holds in the first and \(l \) holds in the second, or the least upper bound of \(I_1 \) is \(\text{inf} \) and \(I_2 \) holds in \(I \). The latter disjunct allows \(g_1 \) to formalise an execution that does not terminate. Using chop, we define the possibly infinite iteration (denoted \(g^\omega \)) of an interval predicate \(g \) as the greatest fixed point of \(\alpha = (g ; z) \lor \text{empty} \), where the interval predicates are ordered using \(\Rightarrow \) (see [DHMS12] for details). Thus, we have:

Interval predicates. A (discrete) interval (of type \(\text{Intv} \)) is a contiguous set of time steps (of type \(\text{Time} \subseteq \mathbb{Z} \)), i.e., \(\text{Intv} \equiv \{ \Delta \subseteq \text{Time} \mid \forall t, t' : \text{Time} . t < t' \Rightarrow u \in \Delta \} \). Using \(\cdot \) for function application, we let \(\text{lub} \Delta \) and \(\text{glb} \Delta \) denote the least upper and greatest lower bounds of an interval \(\Delta \), respectively, where \(\text{lub} \emptyset = -\infty \) and \(\text{glb} \emptyset = \infty \). We define \(\text{inf} \Delta \equiv (\text{lub} \Delta = \infty) \land \text{fin} \Delta \equiv (\text{glb} \Delta = -\infty) \). For a set \(I \) and \(i, j \in I \), we let \([i, j]_I \equiv \{ k \in I \mid i \leq k \leq j \} \) denote the closed interval from \(i \) to \(j \) containing elements from \(I \). One must often reason about two adjoining intervals, i.e., intervals that immediately precede or follow a given interval. We say \(\Delta \) adjoins \(\Delta' \) iff \(\Delta \land \Delta' \), where

\[
\Delta \land \Delta' \equiv (\forall t : \text{Time} . t \leq t' \land (\Delta \cup \Delta' \in \text{Intv}))
\]

Note that adjoining intervals \(\Delta \) and \(\Delta' \) must be disjoint, and by conjunct \(\Delta \cup \Delta' \in \text{Intv} \), the union of \(\Delta \) and \(\Delta' \) must be contiguous. Note that both \(\Delta \land \emptyset \) and \(\emptyset \land \Delta \) hold trivially for any interval \(\Delta \).

A stream of behaviours over \(\text{VA} \subseteq \text{Var} \cup \text{Addr} \) is given by a total function of type \(\text{Stream}_{\text{VA}} \equiv \text{Time} \rightarrow \text{State}_{\text{VA}} \), which maps each time to a state over \(\text{VA} \). To reason about specific portions of a stream, we use interval predicates, which have type \(\text{IntvPred}_{\text{VA}} \equiv \text{Intv} \rightarrow \text{Stream}_{\text{VA}} \rightarrow \mathbb{B} \). Note that because a stream encodes the behaviour over all time, interval predicates may be used to refer to the states outside a given interval. We assume pointwise lifting of operators on stream and interval predicates in the normal manner, define universal implication \(g_1 \Rightarrow g_2 \equiv \forall \Delta : \text{Intv} . \text{Stream} . g_1 . \Delta . s \Rightarrow g_2 . \Delta . s \) for interval predicates \(g_1 \) and \(g_2 \), and say \(g_1 \equiv g_2 \) holds iff both \(g_1 \Rightarrow g_2 \) and \(g_2 \Rightarrow g_1 \) hold. Like Interval Temporal Logic [Mos00], we may define a number of operators on interval predicates, e.g., if \(g \in \text{IntvPred}_{\text{VA}} \), \(\Delta \in \text{Intv} \) and \(s \in \text{Stream}_{\text{VA}} \):

\[
(\Box g) . \Delta . s \equiv \forall \Delta' : \text{Intv} \cdot \Delta' \subseteq \Delta \Rightarrow g . \Delta' . s \quad (\forall g) . \Delta . s \equiv \exists \Delta' : \Delta' \cap \Delta \wedge g . \Delta' . s
\]

We define two operators on interval predicates: chop, which is used to formalise sequential composition, and \(\alpha \)-iteration, which is used to formalise a possibly infinite iteration (e.g., a while loop). The chop operator \(; \) is a basic operator on two interval predicates [Mos00, DDH12, DH12], where \((g_1 ; g_2) . \Delta \) holds iff \(g_1 \) holds in the first and \(g_2 \) holds in the second, or the least upper bound of \(\Delta \) is \(\text{inf} \) and \(g_1 \) holds in \(\Delta \). The latter disjunct allows \(g_1 \) to formalise an execution that does not terminate. Using chop, we define the possibly infinite iteration (denoted \(g^\omega \)) of an interval predicate \(g \) as the greatest fixed point of \(\alpha = (g ; z) \lor \text{empty} \), where the interval predicates are ordered using \(\Rightarrow \) (see [DHMS12] for details). Thus, we have:
We assume that at most one process has write permission to a location σ. Single atomic steps, and hence, may obtain a value for actual states evaluation. In this paper, we consider there are a number of possible ways in which such an evaluation can take place, with varying degrees of non-determinism [HBDJ13]. In this paper, we consider there are a number of possible ways in which such an evaluation can take place, with varying degrees of non-determinism [HBDJ13]. Hence, if one assumes that expression evaluation is non-atomic (i.e., takes time), one must consider evaluation with respect to a set of states, as opposed to a single state. It turns out that there are a number of possible ways in which such an evaluation can take place, with varying degrees of non-determinism [HBDJ13]. In this paper, we consider actual states evaluation, which evaluates an expression with respect to the set of actual states that occur within an interval and apparent states evaluation, which considers the set of states apparent to a given process.

Actual states evaluation allow one to reason about the true state of a system, and evaluates an expression instantaneously at a single point in time. However, a process executing with fine-grained atomicity can only read a single variable at a time, and hence, will seldom be able to view an actual state because interference may occur between two successive reads. For example, a process p evaluating ecl_3 (the expression at ecl_3) cannot read both $\text{n}_1 \rightarrow \text{mrk}$ and $\text{n}_1 \rightarrow \text{val}$ in a single atomic step, and hence, may obtain a value for ecl_3 that is different from any actual value of

$$(g_1; g_2) \Delta_s \equiv (\exists \Delta_1, \Delta_2: \text{Intv} \cdot (\Delta = \Delta_1 \cup \Delta_2) \land (\Delta_1 \cap \Delta_2) \land g_1.\Delta_1.s \land g_2.\Delta_2.s) \lor (\text{inf} \land g_1).\Delta.s$$

g^{\omega} \equiv \forall z \cdot (g : z) \lor \text{empty}

In the definition of $g_1; g_2$, interval Δ_1 may be empty, in which case $\Delta_2 = \Delta$, and similarly Δ_2 may empty, in which case $\Delta_1 = \Delta$. Hence, both ($\text{empty}; g) \equiv g$ and $g \equiv (g; \text{empty})$ trivially hold. An iteration g^{ω} of g may iterate g a finite (including zero) number of times, but also allows an infinite number of iterations [DHMS12].

Permissions and interference. To model true concurrency, the behaviour of the parallel composition between two processes in an interval Δ is modelled by the conjunction of the behaviours of both processes executing within Δ. Because this potentially allows conflicting accesses to shared variables, we incorporate fractional permissions into our framework [Boy03, DDH12]. We assume the existence of a permission variable in every state $\sigma \in \text{State}_{VA}$ of type $VA \rightarrow \text{Proc}
\rightarrow [0, 1]_\mathbb{Q}$, where $VA \subseteq \text{Var} \cup \text{Addr}$ and \mathbb{Q} denotes the set of rationals. A process $p \in \text{Proc}$ has write-permission to location $va \in VA$ in $\sigma \in \text{State}_{VA}$ iff $p.\text{va}.p = 1$; has read-permission to va in σ iff $0 < p.\text{Pi}.va.p < 1$; and has no-permission to access va in σ iff $p.\text{Pi}.va.p = 0$.

We define $\mathcal{R}.va.p.\sigma \equiv (0 < p.\text{Pi}.va.p < 1)$ and $\mathcal{W}.va.p.\sigma \equiv (p.\text{Pi}.va.p = 1)$ and $\mathcal{D}.va.p.\sigma \equiv (p.\text{Pi}.va.p = 0)$ to be state predicates on permissions. In the context of a stream s, for any time $t \in \mathbb{Z}$, process p may only write to and read from va in the transition step from $s.(t-1)$ to $s.t$ if $\mathcal{W}.va.p.(s.t)$ and $\mathcal{R}.va.p.(s.t)$ hold, respectively. Thus, $\mathcal{W}.va.p.(s.t)$ does not give p permission to write to va in the transition from $s.t$ to $s.(t+1)$ (and similarly $\mathcal{R}.va.p$). For example, to state that process p updates variable ν to value k at time t of stream s, the effect of the update should imply $((\nu = k) \land \mathcal{W}.v.p).(s.t)$.

One may introduce healthiness conditions on streams that formalise our assumptions on the underlying hardware. We assume that at most one process has write permission to a location va at any time, which is guaranteed by ensuring the sum of the permissions of the processes on va at all times is at most 1, i.e., $\forall s: \text{Stream}, t: \text{Time} \cdot ((\sum_{p \in \text{Proc}} p.\text{va}.p) \leq 1).(s.t)$. Other conditions may be introduced to model further restrictions as required [DDH12].

4 Evaluating state predicates over intervals

The set of times within an interval corresponds to a set of states with respect to a given stream. Hence, if one assumes that expression evaluation is non-atomic (i.e., takes time), one must consider evaluation with respect to a set of states, as opposed to a single state. It turns out that there are a number of possible ways in which such an evaluation can take place, with varying degrees of non-determinism [HBDJ13]. In this paper, we consider actual states evaluation, which evaluates an expression with respect to the set of actual states that occur within an interval and apparent states evaluation, which considers the set of states apparent to a given process.
because interference may occur between reads to $n_1p \mapsto mrk$ and $n_1p \mapsto val$. Therefore, we define an apparent states evaluator that models fine-grained expression evaluation over intervals. Our definition of apparent states evaluation does not fix the order in which $n_1p \mapsto mrk$ and $n_1p \mapsto val$ are read. We see this as advantageous over frameworks that must make the atomicity explicit (e.g., [VHHS06, CGLM06, DSW11]), which require an ordering to be chosen, even if an evaluation order is not specified by the corresponding implementation (e.g., [HHL+07]). In [VHHS06, CGLM06, DSW11], if the order of evaluation is modified, the linearisability proof must be redone, whereas our proof is more general because it shows that any order of evaluation is valid.

Evaluation over actual states. To formalise evaluators over actual states, for an interval Δ and stream $s \in Stream_{VA}$, we define $\text{states.}\Delta.s \equiv \{ \sigma: State_{VA} \mid \exists t: \Delta \cdot \sigma = s.t \}$. Two useful operators for a set of actual states of a state predicate c are $\Diamond c$ and $\Box c$, which specify that c holds in some and all actual state of the given stream within the given interval, respectively.

$$(\Diamond c).\Delta.s \equiv \exists \sigma: \text{states.}\Delta.s \cdot c.\sigma \quad (\Box c).\Delta.s \equiv \forall \sigma: \text{states.}\Delta.s \cdot c.\sigma$$

Example 1. Suppose v is a variable, fa and fb are fields, and s is a stream such that the expression $(v \mapsto fa, v \mapsto fb)$ always evaluates to $(0,0)$, $(1,0)$ and $(1,1)$ within intervals $[1,4]_{[N]}$, $[5,10]_{[N]}$ and $[11,16]_{[N]}$, respectively, i.e., for example $\Box((v \mapsto fa, v \mapsto fb) = (0,0))$, $[1,4]_{[N]}$, s. Thus, both $\Box((v \mapsto fa) > (v \mapsto fb)), [1,16]_{[N]}, s$ and $\Diamond((v \mapsto fa) > (v \mapsto fb)), [1,16]_{[N]}$,$s$ may be deduced.

Using \Box, we define $\overline{\Diamond}$ and $\overline{\Box}$, which hold iff c holds at the beginning and end of the given interval, respectively.

$$\overline{\Diamond} \equiv (\Box c \land \neg \text{empty}) \land \text{true} \quad \overline{\Box} \equiv \text{true} \land (\Box c \land \neg \text{empty})$$

Operators \Box and \Diamond cannot accurately model fine-grained interleaving in which processes are able to access at most one location in a single atomic step. However, both \Box and \Diamond are useful for modelling the actual behaviour of the system as well as the behaviour of the coarse-grained abstractions that we develop. We may use \Box to define stability of a variable v, and invariance of a state predicate c as follows:

$$\text{stable}.v \equiv \exists k \cdot (va = k) \land \Box(va = k) \quad \text{inv}.c \equiv \Diamond \overline{c} \Rightarrow \Box c$$

Such definitions of stability and invariance are necessary because adjoining intervals are assumed to be disjoint, i.e., do not share a point of overlap. Therefore, one must refer to the values at the end of some immediately preceding interval.

Evaluation over states apparent to a process. Assuming the same setup as Example 1, if p is only able to access at most one location at a time, evaluating $(v \mapsto fa) < (v \mapsto fb)$ using the states apparent to process p over the interval $[1,4]_{[N]}$ may result in true, e.g., if the value at v-fa is read within interval $[1,4]_{[N]}$ and the value at v-fb read within $[11,16]_{[N]}$.

Reasoning about the apparent states with respect to a process p using function apparent is not always adequate because it is not enough for an apparent state to exist; process p must also be able to read the relevant variables in this apparent state. Typically, it is not necessary for a process to be able to read all of the state variables to determine the apparent value of a given state predicate. In fact, in the presence of local variables (of other processes), it will be impossible for p to read the value of each variable. Hence, we define a function $\text{apparent}_{p,W}$, where $W \subseteq \text{Var} \cup \text{Addr}$ is the set of locations whose values process p needs to determine to evaluate the given state predicate.

$$\text{apparent}_{p,W}.\Delta.s \equiv \{ \sigma: \text{State}_{W} \mid \forall va: W \cdot \exists t: (\sigma.va = s.t.va) \land \Box va.p.(s.t) \}$$
Using this function, we are able to determine whether state predicates definitely and possibly hold with respect to the apparent states of a process. For a state predicate \(c \), interval \(\Delta \), stream \(s \) and state \(\sigma \), we let \(\text{accessed}.c.\sigma \) denote the smallest set of locations (variables and addresses) that must be accessed in order to evaluate \(c \) in state \(\sigma \) and define \(\text{locs}.c.\Delta.s \equiv \bigcup_{t \in \Delta} \text{accessed}.c.(s.t) \).

For a process \(p \), this is used to define \((\bigotimes_p c).\Delta.s \), which states that \(c \) holds in all states apparent to \(p \) in \(s \) within \(\Delta \). (Similarly \((\bigotimes_p c).\Delta.s \).

\[
\begin{align*}
(\bigotimes_p c).\Delta.s & \equiv \quad \text{let } W = \text{locs}.c.\Delta.s \text{in } \forall \sigma : \text{apparent}_{p,W}.\Delta.s \cdot c.\sigma \\
(\bigotimes_p c).\Delta.s & \equiv \quad \text{let } W = \text{locs}.c.\Delta.s \text{in } \exists \sigma : \text{apparent}_{p,W}.\Delta.s \cdot c.\sigma
\end{align*}
\]

Continuing Example 1, if \(c \equiv ((v \mapsto f a) \geq (v \mapsto f b)) \), we have \((\neg \bigotimes_p c).[1,16]_{\text{N}}.s \) holds, i.e., \((\bigotimes_p \neg c).[1,16]_{\text{N}}.s \) even though \((\bigotimes c).[1,16]_{\text{N}}.s \) holds (cf. [DDH12, HBDJ13]). One may establish a number of properties on \(\bigotimes, \bigodot, \bigoplus \) and \(\bigotimes [HBDJ13] \), for example \(\bigotimes_p (c \land d) \Rightarrow \bigotimes_p c \land \bigotimes_p d \) holds. Furthermore, for any process \(p \), variable \(v \), field \(f \) and constant \(k \),

\[
\text{stable}.v \land \bigotimes_p ((v \mapsto f) = k) \Rightarrow \bigotimes ((v \mapsto f) = k)
\]

(1)

5 Behaviours and refinement

The \textit{behaviour} of a command \(C \) executed by a non-empty set of processes \(P \) in a context \(Z \subseteq \text{Var} \) is given by interval predicate \(\text{beh}_{p,Z}.C \), which is defined inductively in Fig. 5. We use \(\text{beh}_{p,Z} \) to denote \(\text{beh}_{[p]} \) and assume the existence of a program counter variable \(p_{c_p} \) for each process \(p \).

We define shorthand \(\text{fin}_{\text{Idle}} \equiv \text{Enf}^\text{fin} \cdot \text{Idle} \) and \(\text{inf}_{\text{Idle}} \equiv \text{Enf}^\text{inf} \cdot \text{Idle} \) to denote finite and infinite idling, respectively and use the interval predicates below to formalise the semantics of the commands in Fig. 5.

\[
\begin{align*}
\text{eval}_{p,Z}.c & \equiv \bigotimes_p c \land \text{beh}_{p,Z}.\text{Idle} \\
\text{update}_{p,Z}(va,k) & \equiv \begin{cases} \text{beh}_{p,Z}(\{va\}).\text{Idle} \land \neg \text{empty} \land (va = k \land \forall_p va) & \text{if } va \in \text{Var} \\
\text{beh}_{p,Z}(\{va\}).\text{Idle} \land \neg \text{empty} \land (\forall_p va = k \land \forall_p va) & \text{if } va \in \text{Addr}
\end{cases}
\end{align*}
\]

To enable compositional reasoning, for interval predicates \(r \) and \(g \), and command \(C \), we introduce two additional constructs \(\text{RELY} r \cdot C \) and \(\text{ENFG} \cdot C \), which denote a command \(C \) with a rely condition \(r \) and an enforced condition \(g \), respectively [DDH12].

We say that a concrete command \(C \) is a refinement of an abstract command \(A \) iff every possible behaviour of \(C \) is a possible behaviour of \(A \). Command \(C \) may use additional variables to those in \(A \), hence, we define refinement in terms of sets of variables corresponding to the contexts of \(A \) and \(C \). In particular, we say \(A \) with context \(Y \) is \textit{refined} by \(C \) with context \(Z \) with respect to a set of processes \(P \) (denoted \(A \sqsubseteq^{Y,Z}_P C \)) iff \(\text{beh}_{p,Y}.A \Rightarrow \text{beh}_{p,Y}.C \) holds. Thus, any behaviour of the concrete command \(C \) is a possible behaviour of the abstract command \(A \). This is akin to operation refinement [RE96], however, our definition is with respect to the intervals over which the commands execute, as opposed to their pre/post states. We write \(A \sqsubseteq^{Y}_P C \) for \(A \sqsubseteq^{Y,Z}_P C \), write \(A \sqsubseteq^Y_P C \) for \(A \sqsubseteq^{Y,Z}_P C \), and write \(A \sqsubseteq^Z_P C \) for \(A \sqsubseteq^{Y,Z}_P C \).

The next lemma states that an assignment of state predicate \(c \) to a variable \(v \) may be decomposed to a guard \([c]\) followed by an assignment of \text{true} to \(v \) and a guard \([\neg c]\) followed by an assignment of \text{false} to \(v \). Furthermore, one may move the frame of a command into the refinement relation.
Theorem 1. The next theorem establishes a Galois connection between rely and enforced conditions [DDH12].

Lemma 1. Suppose c is a state predicate, $v \in \text{Var}$, $W, X \subseteq \text{Var}$, $Y, Z \subseteq \text{Var} \cup \text{Addr}$, $p \in \text{Proc}$, $P \subseteq \text{Proc}$ and A and C are commands. Then

1. $v := c \sqsubseteq_p [c] ; v := \text{true}] \sqcap [\neg c] ; v := \text{false}$. and
2. $[W \mid A] \sqsubseteq_p [Y \\ X \mid C]$ provided $A \sqsubseteq_p W \cup Y \cap X \cap Z$ and $W \subseteq (X \cup Z)$ and $W \cap Y = \emptyset = X \cap Z$.

The next theorem establishes a Galois connection between rely and enforced conditions [DDH12].

Theorem 1. $(\text{RELY} \ r \cdot A) \sqsubseteq_p Y \ Z C \iff A \sqsubseteq_p Y \ Z (\text{ENF} r \cdot C)$

When modelling a lock-free algorithm [CGLM06, DSW11, VHHS06], one assumes that each process repeatedly executes operations of the data structure, and hence the process of the system only differ in terms of the process ids. For such programs, a proof of the parallel composition may be decomposed using the following theorem [DD12].

Theorem 2. If $p \in \text{Proc}$, $Y, Z \subseteq \text{Var} \cup \text{Addr}$, and $A(p)$ and $C(p)$ are commands parameterised by p, then $(\text{RELY} \ g \cdot Y \ Z C(p)) \sqsubseteq_p (\text{ENF} r \cdot C(p))$ holds if for some interval predicate r and some $p \in P$ and $Q \equiv P \setminus \{p\}$ both of the following hold.

\[
\text{RELY} \ g \land r \cdot A(p) \sqsubseteq_p Y \ Z C(p) \quad (2)
\]
\[
\text{ENF} r \cdot C(p) \implies r \quad (3)
\]

6 Verification of the lazy set

Details of the proof are presented in [DD13]. Here, we only present a high-level overview of the proof and its decomposition (see Section 7). Furthermore, because (as already mentioned) verification of linearisability of contains contains is known to be difficult using frameworks that only
contains

\[\varphi^{k+1}.ua.\sigma \triangleq \text{if}(k = 0) \text{then} u.a \text{else} \text{eval}(\varphi^{k}.ua.\sigma) \rightarrow \text{nxt}.\sigma \]

RE.ua.vb.\sigma \triangleq \exists k. N \cdot \varphi^{k}.ua.\sigma = vb

setAddr.\sigma \triangleq \{ a.\text{Addr} \mid \text{RE.\text{Head}.a.}\sigma \wedge \neg \text{eval}(a \rightarrow \text{mrk}).\sigma \}

absSet.\sigma \triangleq \{ v.\text{Val} \mid \exists a.\text{setAddr.}\sigma \cdot v = \text{eval}(a \rightarrow \text{val}).\sigma \}

CGCon(p, x) \triangleq (x \in \text{absSet} \land \text{res}_p := \text{true}) \cap (x \notin \text{absSet} \land \text{res}_p := \text{false})

CGS(p) \triangleq \left[\text{res}_p \mid \left(\bigcap_{u \in \mathcal{Z}} (\text{CGAdd}(p, x) \cap \text{CGRem}(p, x) \cap \text{CGCon}(p, x))^* \right) \right]

CGSet(P) \triangleq [\text{Head}, \text{Tail} \mid \text{RELY} \hat{HT} \text{Init} \bullet ||_{p^P} \text{CGS}(p)]

Figure 6: A coarse-grained abstraction of contains

![Diagram](image)

Figure 7: Proof decomposition for the lazy set verification

consider the pre/post states [CGLM06, DSW11, Vaf10, VHHS06], we focus on its proof. A coarse-grained abstraction of Set(P) in Fig. 4 is given by CGSet(P) in Fig. 6, where for example, Contains is replaced by CGCon, which tests to see if x is in the set using an atomic (coarse-grained) guard, then updates the return value to true or false depending on the outcome of the test. Details of CGAdd and CGRem are elided; we ask the interested reader to consult [DD13].

To prove refinement for Contains(p, x) in Fig. 7, we use Lemma 1 to replace Contains(p, x) by

\[\text{CL} : \left((\text{cl}1_3 : (\text{IN} \mid \text{res}_p := \text{true})) \cap (\text{cl}3_3 : (\neg \text{IN} \mid \text{res}_p := \text{false})) \right) \]

where label cl3 has been split into cl1 and cl3 for the true and false cases, respectively, and

\[\text{IN} \triangleq \neg(n1_p \rightarrow \text{mrk}) \cap ((n1_p \rightarrow \text{val}) = x) \quad \text{CL} \triangleq n1_p : \text{Head} ; \text{cl}2 : \text{CLoop}(p, x) \]

We then distribute CL within the ‘\cap’, use monotonicity to match the abstract and concrete true and false branches, then use monotonicity again to remove the assignments to resp from both sides of the refinement. Thus, we are required to prove the following properties.

\[
\begin{align*}
\text{RELY} r^* \langle x \in \text{absSet} \rangle & \quad \subseteq^{L_P} M \text{ CL ; cl}1_3; \text{IN} \quad (4) \\
\text{RELY} r^* \langle x \notin \text{absSet} \rangle & \quad \subseteq^{L_P} M \text{ CL ; cl}3_3; \text{IN} \quad (5)
\end{align*}
\]

Proof of (4). This condition states that there must be an actual state \(\sigma \) within the interval in which \(\text{CL ; cl}1_3; \text{IN} \) executes, such that \(x \in \text{absSet} \cdot \sigma \) holds, i.e., there is a point at which the abstract set contains \(x \). It may be the case that a process \(p \neq p \) has removed \(x \) from the set by the time process \(p \) returns from the contains operation. In fact, \(x \) may be added and removed several times by concurrent add and remove operations before process \(p \) completes execution of Contains(p, x). However, this does not affect linearisability of Contains(p, x) because a state
for which \(x \in \text{absSet} \) holds has been found. An execution of \text{Contains}(p, x)\) that returns \textit{true} would only be incorrect (not linearisable) if \textit{true} is returned and \(\Box(x \notin \text{absSet}) \) holds for the interval in which \(CL; clt_3; \neg \text{IN} \) executes. Similarly, we prove correctness of (5) by showing that is impossible for there to be an execution that returns \textit{false} if \(\Box(x \in \text{absSet}) \) holds in the interval of execution.

\textbf{Proof of (5).} Using Theorem 1, we transfer the rely condition \(r \) to the right hand side as an enforced property, define \(\text{INV} \equiv \text{RE.Head}.n_1 p \lor (n_1 p \mapsto \text{mrk}) \), and require that \(r \) implies:

\[
\text{inv.INV} \land \Box(\Box(pc_p = clt_1) \Rightarrow \text{inv}.(n_1 p \mapsto \text{mrk}) \land \forall k: \text{inv}.((n_1 p \mapsto \text{val}) = k)) \tag{6}
\]

The behaviour of the right hand side of (4) simplifies to the following interval predicate using assumption (6) and that \(r \) is assumed to split.

\[
(r \land \text{beh}_{p,L,\text{Idle}}); (r \land (\Box \neg \text{IN}; (\Diamond \neg(n_1 p \mapsto \text{mrk}) \land \Diamond((n_1 p \mapsto \text{val}) = x)))
\]

Using assumption (6), it is possible to show that the second part of the chop implies the following, where \(\text{inSet}(ua, x) \equiv \text{RE.Head}.ua \land \neg(ua \mapsto \text{mrk}) \land (ua \mapsto \text{val} = x) \) holds iff \(ua \) with value \(x \) is in the abstract set.

\[
\exists a: \text{Addr} \cdot \text{inSet}(\text{Head}, a, x); (\Box (n_1 p = a) \land \neg(a \mapsto \text{mrk}) \land \Diamond((a \mapsto \text{val}) = x))
\]

This trivially implies the required result, i.e., that \(\Diamond(x \notin \text{absSet}) \).

To prove (5), as with (4), we use Theorem 1 to transfer the rely condition \(r \) to the right hand side as an enforced property. By logic, the right hand side of (5) is equivalent to command \(\text{ENF} r \land (\Box(x \notin \text{absSet}) \lor \Diamond(x \notin \text{absSet})) \cdot CL; clf_3; \neg \text{IN}. \) The \(\Diamond(x \notin \text{absSet}) \) case is trivially true. For case \(\Box(x \notin \text{absSet}) \), we require that \(r \) satisfies:

\[
\Box(\Box(x \notin \text{absSet}) \Rightarrow \exists a: \text{Addr} \cdot \Box \text{inSet}(\text{Head}, a, x)) \tag{7}
\]

\[
\Box(\forall k: \text{N} \cdot \phi^k.\text{Head} \neq \text{Tail} \Rightarrow (\phi^k.\text{Head} \mapsto \text{val}) < (\phi^{k+1}.\text{Head} \mapsto \text{val})) \tag{8}
\]

\[
\Box(\text{RE}.n_1 p, \text{Tail}) \tag{9}
\]

By (7), in any interval, if the value \(x \) is in the set throughout the interval, there is an address that can be reached from \(\text{Head} \), the marked bit corresponding to the node at this address is unmarked and the value field contains \(x \). By (8) the reachable nodes of the list (including marked nodes) must be sorted in strictly ascending order and by (9) the \(\text{Tail} \) node must be reachable from \(n_1 p \). Conditions (7), (8) and (9) together imply that there cannot be a terminating execution of \(\text{CLoop}(p, x) \) such that \(clf_3; \neg \text{IN} \) holds, i.e., the behaviour is equivalent to \textit{false}.

The rely condition \(r \) for the proof of \textit{contains} must imply each of (6), (7), (8) and (9). We choose to take the weakest possible instantiation and let \(r \) be the conjunction (6) \land (7) \land (8) \land (9), which, as shown in Fig. 7, must be satisfied by the rest of the program. This proof is straightforward by expanding the definitions of the behaviours and its details are elided.

\section{Conclusions}

We have developed a framework, based on [DDH12], for reasoning about the behaviour of a command over an interval that enables reasoning about pointer-based programs where processes
may refer to states that are apparent to a process [HBDJ13]. Parallel composition is defined using conjunction and conflicting access to shared state is disallowed using fractional permissions, which models truly concurrent behaviour. We formalise behaviour refinement in our framework, which can be used to show that a fine-grained implementation is a refinement of a coarse-grained abstraction. One is only required to identify linearising statements of the abstraction (as opposed to the implementation) and the proof of linearisability itself is simplified due to the coarse-granularity of commands. For the coarse-grained contains operation in Fig. 6, the guard \(\langle x \in \text{absSet} \rangle \) is the linearising statement for an execution that returns true and \(\langle x \notin \text{absSet} \rangle \) the linearising statement of an execution that returns false.

Our proof method is compositional (in the sense of rely/guarantee) and in addition, we develop the rely conditions necessary to prove correctness incrementally. As an example, we have shown refinement between the \texttt{contains} operation of the lazy set [HHL´07] and an abstraction of the contains operation that executes with coarse-grained atomicity.

Acknowledgements. This work is supported by EPSRC Grant EP/J003727/1. We thank Gerhard Schellhorn and Bogdan Tofan for useful discussions, and anonymous reviewers for their insightful comments.

Bibliography

15

